An EGFR signature predicts cell line and patient sensitivity to multiple tyrosine kinase inhibitors

被引:15
作者
Cheng, Chao [1 ,2 ,3 ]
Zhao, Yanding [4 ]
Schaafsma, Evelien [4 ]
Weng, Yi-Lan [5 ]
Amos, Christopher [1 ,2 ,3 ]
机构
[1] Baylor Coll Med, Dept Med, Houston, TX 77030 USA
[2] Baylor Coll Med, Inst Clin & Translat Res, Houston, TX 77030 USA
[3] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, BCM451,Suite 100D, Houston, TX 77030 USA
[4] Geisel Sch Med Dartmouth, Dept Biomed Data Sci, Lebanon, NH USA
[5] Houston Methodist Res Inst, Ctr Neuroregenerat, Dept Neurosurg, Houston, TX USA
关键词
biomarker; EGFR; EGFR-targeted therapy; tyrosine kinase inhibitor; LUNG-CANCER; CLINICAL-RESPONSE; MESENCHYMAL TRANSITION; GENE-EXPRESSION; GEFITINIB; MUTATIONS; CARCINOMA; ERLOTINIB; CHEMOTHERAPY; BEVACIZUMAB;
D O I
10.1002/ijc.33053
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
EGFR is an oncogene with a high frequency of activating mutations in nonsmall cell lung cancer (NSCLC). EGFR inhibitors have been FDA-approved for NSCLC and have shown efficacy in patients with certain EGFR mutations. However, only 9% to 26% of these patients achieve objective responses. In our study, we developed an EGFR gene signature based on The Cancer Genome Atlas (TCGA) RNA-seq data of lung adenocarcinoma (LUAD) to direct the preselection of patients for more effective EGFR-targeted therapy. This signature infers baseline EGFR signaling pathway activity (denoted as EGFR score) in tumor samples, which is associated with tumor sensitivity to EGFR inhibitors and other tyrosine kinase inhibitors (TKIs). EGFR score predicted sensitivity of lung cancer cell lines to Erlotinib, Gefitinib and Sorafenib. Importantly, EGFR score calculated from pretreated samples was associated with patient response to Gefitinib and Sorafenib in lung cancer. Additionally, integration of the EGFR signature with TCGA LUAD data showed that it accurately predicted functional effects of different somatic EGFR mutations, and identified other mutations affecting EGFR pathway activity. Finally, using cancer cell line and clinical trial data, the EGFR score was associated with patient response to TKIs in liver cancer and other cancer types. The EGFR signature provides a useful biomarker that can expand the application of EGFR inhibitors or other TKIs and improve their treatment efficacy through patient stratification.
引用
收藏
页码:2621 / 2633
页数:13
相关论文
共 52 条
[1]   Liquid Biopsy Enables Quantification of the Abundance and Interindividual Variability of Hepatic Enzymes and Transporters [J].
Achour, Brahim ;
Al-Majdoub, Zubida M. ;
Grybos-Gajniak, Agnieszka ;
Lea, Kristi ;
Kilford, Peter ;
Zhang, Mian ;
Knight, David ;
Barber, Jill ;
Schageman, Jeoffrey ;
Rostami-Hodjegan, Amin .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 (01) :222-232
[2]  
[Anonymous], 2010, WOMENS HEALTH, V6, P171, DOI [10.2217/whe.10.11, 10.2217/WHE.10.11]
[3]   Gene expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors [J].
Balko, Justin M. ;
Potti, Anil ;
Saunders, Christopher ;
Stromberg, Arnold ;
Haura, Eric B. ;
Black, Esther P. .
BMC GENOMICS, 2006, 7 (1)
[4]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[5]   Genetic and transcriptional evolution alters cancer cell line drug response [J].
Ben-David, Uri ;
Siranosian, Benjamin ;
Ha, Gavin ;
Tang, Helen ;
Oren, Yaara ;
Hinohara, Kunihiko ;
Strathdee, Craig A. ;
Dempster, Joshua ;
Lyons, Nicholas J. ;
Burns, Robert ;
Nag, Anwesha ;
Kugener, Guillaume ;
Cimini, Beth ;
Tsvetkov, Peter ;
Maruvka, Yosef E. ;
O'Rourke, Ryan ;
Garrity, Anthony ;
Tubelli, Andrew A. ;
Bandopadhayay, Pratiti ;
Tsherniak, Aviad ;
Vazquez, Francisca ;
Wong, Bang ;
Birger, Chet ;
Ghandi, Mahmoud ;
Thorner, Aaron R. ;
Bittker, Joshua A. ;
Meyerson, Matthew ;
Getz, Gad ;
Beroukhim, Rameen ;
Golub, Todd R. .
NATURE, 2018, 560 (7718) :325-+
[6]   An Epithelial-Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance [J].
Byers, Lauren Averett ;
Diao, Lixia ;
Wang, Jing ;
Saintigny, Pierre ;
Girard, Luc ;
Peyton, Michael ;
Shen, Li ;
Fan, Youhong ;
Giri, Uma ;
Tumula, Praveen K. ;
Nilsson, Monique B. ;
Gudikote, Jayanthi ;
Tran, Hai ;
Cardnell, Robert J. G. ;
Bearss, David J. ;
Warner, Steven L. ;
Foulks, Jason M. ;
Kanner, Steven B. ;
Gandhi, Varsha ;
Krett, Nancy ;
Rosen, Steven T. ;
Kim, Edward S. ;
Herbst, Roy S. ;
Blumenschein, George R. ;
Lee, J. Jack ;
Lippman, Scott M. ;
Ang, K. Kian ;
Mills, Gordon B. ;
Hong, Waun K. ;
Weinstein, John N. ;
Wistuba, Ignacio I. ;
Coombes, Kevin R. ;
Minna, John D. ;
Heymach, John V. .
CLINICAL CANCER RESEARCH, 2013, 19 (01) :279-290
[7]  
Cancer Genome Atlas Research Network, 2018, Nature, V559, pE12, DOI [10.1038/nature13385, 10.1038/s41586-018-0228-6]
[8]   Inferring activity changes of transcription factors by binding association with sorted expression profiles [J].
Cheng, Chao ;
Yan, Xiting ;
Sun, Fengzhu ;
Li, Lei M. .
BMC BIOINFORMATICS, 2007, 8 (1)
[9]  
Cheng L, 2011, FUTURE ONCOL, V7, P519, DOI [10.2217/FON.11.25, 10.2217/fon.11.25]
[10]   Baseline gene expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines [J].
Coldren, Christopher D. ;
Helfrich, Barbara A. ;
Witta, Samir E. ;
Sugita, Michio ;
Lapadat, Razvan ;
Zeng, Chan ;
Baron, Anna ;
Franklin, Wilbur A. ;
Hirsch, Fred R. ;
Geraci, Mark W. ;
Bunn, Paul A., Jr. .
MOLECULAR CANCER RESEARCH, 2006, 4 (08) :521-528