Fractal Poisson processes

被引:8
|
作者
Eliazar, Iddo [1 ]
Klafter, Joseph [2 ]
机构
[1] Holon Inst Technol, Dept Technol Management, IL-58102 Holon, Israel
[2] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel
关键词
fractal Poisson processes; stochastic limit-laws; nonlinear scaling; power-laws; self-similarity; Central Limit Theorem (CLT); Extreme Value Theory (EVT);
D O I
10.1016/j.physa.2008.05.011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Central Limit Theorem (CLT) and Extreme Value Theory (EVT) study, respectively, the stochastic limit-laws of sums and maxima of sequences of independent and identically distributed (i.i.d.) random variables via an affine scaling scheme. In this research we study the stochastic limit-laws of populations of i.i.d. random variables via nonlinear scaling schemes. The stochastic population-limits obtained are fractal Poisson processes which are statistically self-similar with respect to the scaling scheme applied, and which are characterized by two elemental structures: (i) a universal power-law structure common to all limits, and independent of the scaling scheme applied; (ii) a specific structure contingent on the scaling scheme applied. The sum-projection and the maximum-projection of the population-limits obtained are generalizations of the classic CLT and EVT results extending them from affine to general nonlinear scaling schemes. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4985 / 4996
页数:12
相关论文
共 50 条
  • [21] FRACTAL RENEWAL PROCESSES
    LOWEN, SB
    TEICH, MC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (05) : 1669 - 1671
  • [22] Fractal structures and processes
    Bassingthwaighte, JB
    Beard, DA
    Percival, DB
    Raymond, GM
    CHAOS AND THE CHANGING NATURE OF SCIENCE AND MEDICINE: AN INTRODUCTION, 1996, (376): : 54 - 79
  • [23] FRACTAL IN WAVE PROCESSES
    ZOSIMOV, VV
    LYAMSHEV, LM
    USPEKHI FIZICHESKIKH NAUK, 1995, 165 (04): : 361 - 402
  • [24] The Poisson Maximum Entropy Model for Homogeneous Poisson Processes
    Khribi, Lotfi
    Fredette, Marc
    Macgibbon, Brenda
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3435 - 3456
  • [26] CONSECUTIVE SUBORDINATION OF POISSON PROCESSES AND GAMMA PROCESSES
    Mayster, Penka
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (06): : 735 - 742
  • [27] Approximation of Hunt Processes by Multivariate Poisson Processes
    Zhi-Ming Michael Ma
    Wei Sun
    Acta Applicandae Mathematica, 2000, 63 : 233 - 243
  • [28] Transforming spatial point processes into Poisson processes
    Schoenberg, F
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 81 (02) : 155 - 164
  • [29] Transforming spatial point processes into Poisson processes
    Stoch. Processes Appl., 2 (155-164):
  • [30] DETAIL PROCESSES OF POISSON'S COMPLEX PROCESSES
    Kobilich, K. V.
    Sakhno, L. M.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 94 : 85 - 92