Microscopic approach to nonlinear reaction-diffusion: The case of morphogen gradient formation

被引:22
作者
Boon, Jean Pierre [1 ]
Lutsko, James F. [1 ]
Lutsko, Christopher [2 ]
机构
[1] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
[2] Int Sch Brussels, B-1170 Brussels, Belgium
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 02期
关键词
D O I
10.1103/PhysRevE.85.021126
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a microscopic theory for reaction-diffusion (RD) processes based on a generalization of Einstein's master equation [Ann. Phys. 17, 549 (1905)] with a reactive term and show how the mean-field formulation leads to a generalized RD equation with nonclassical solutions. For the nth-order annihilation reaction A + A + A + ... + A -> 0, we obtain a nonlinear reaction-diffusion equation for which we discuss scaling and nonscaling formulations. We find steady states with solutions either exhibiting long-range power-law behavior showing the relative dominance of subdiffusion over reaction effects in constrained systems or, conversely, solutions that go to zero a finite distance from the source, i.e., having finite support of the concentration distribution, describing situations in which diffusion is slow and extinction is fast. Theoretical results are compared with experimental data for morphogen gradient formation.
引用
收藏
页数:7
相关论文
共 13 条
[1]   Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks [J].
Abad, E. ;
Yuste, S. B. ;
Lindenberg, Katja .
PHYSICAL REVIEW E, 2010, 81 (03)
[2]  
[Anonymous], 2002, Mathematical biology, Interdisciplinary applied mathematics
[4]   Self-enhanced ligand degradation underlies robustness of morphogen gradients [J].
Eldar, A ;
Rosin, D ;
Shilo, BZ ;
Barkai, N .
DEVELOPMENTAL CELL, 2003, 5 (04) :635-646
[5]   Subdiffusion, chemotaxis, and anomalous aggregation [J].
Fedotov, Sergei .
PHYSICAL REVIEW E, 2011, 83 (02)
[6]   Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc [J].
Han, C ;
Yan, D ;
Belenkaya, TY ;
Lin, XJ .
DEVELOPMENT, 2005, 132 (04) :667-679
[7]   Random time-scale invariant diffusion and transport coefficients [J].
He, Y. ;
Burov, S. ;
Metzler, R. ;
Barkai, E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[8]   Development of anomalous diffusion among crowding proteins [J].
Horton, Margaret R. ;
Hoefling, Felix ;
Raedler, Joachim O. ;
Franosch, Thomas .
SOFT MATTER, 2010, 6 (12) :2648-2656
[9]   Generalized diffusion: A microscopic approach [J].
Lutsko, James F. ;
Boon, Jean Pierre .
PHYSICAL REVIEW E, 2008, 77 (05)
[10]   Fractional Brownian Motion Versus the Continuous-Time Random Walk: A Simple Test for Subdiffusive Dynamics [J].
Magdziarz, Marcin ;
Weron, Aleksander ;
Burnecki, Krzysztof ;
Klafter, Joseph .
PHYSICAL REVIEW LETTERS, 2009, 103 (18)