Sharp embeddings of Besov spaces involving only logarithmic smoothness

被引:29
作者
Caetano, Antonio M. [1 ]
Gogatishvili, Amiran [2 ]
Opic, Bohumir [2 ,3 ]
机构
[1] Univ Aveiro, Dept Matemat, P-3810193 Aveiro, Portugal
[2] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Tech Univ Liberec, Dept Math & Didact Math, Liberec 46117, Halkova, Czech Republic
关键词
Besov spaces with generalized smoothness; Lorentz-Zygmund spaces; sharp embeddings; growth envelopes;
D O I
10.1016/j.jat.2007.12.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use Kolyada's inequality and its converse form to prove sharp embeddings of Besov spaces B-p,r(0,beta) (involving the zero classical smoothness and a logarithmic smoothness with the exponent beta) into Lorentz-Zygmund spaces. We also determine growth envelopes of spaces B-p,r(0,beta). In distinction to the case when the classical smoothness is positive, we show that we cannot describe all embeddings in question in terms of growth envelopes. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:188 / 214
页数:27
相关论文
共 17 条
[1]  
[Anonymous], 1994, INEQUALITIES
[2]  
Caetano AM, 2004, MATH INEQUAL APPL, V7, P573
[3]   Local growth envelopes of spaces of generalized smoothness: the subcritical case [J].
Caetano, AM ;
Moura, SD .
MATHEMATISCHE NACHRICHTEN, 2004, 273 :43-57
[4]   Local growth envelopes of Triebel-Lizorkin spaees of generalized smoothness [J].
Caetano, Antonio M. ;
Leopold, Hans-Gerd .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (04) :427-445
[5]  
Caetano AM, 2006, Z ANAL ANWEND, V25, P265
[6]   Embeddings and duality theorems for weak classical Lorentz spaces [J].
Gogatishvili, A ;
Pick, L .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (01) :82-95
[7]   Discretization and anti-discretization of rearrangement-invariant norms [J].
Gogatishvili, A ;
Pick, L .
PUBLICACIONS MATEMATIQUES, 2003, 47 (02) :311-358
[8]  
GOLDMAN M, 1987, T MAT I STEKLOVA, V180, P93
[9]  
GOLDMAN ML, 2003, T MAT I STEKLOVA, V243, P161
[10]  
Gurka P., 2005, REV MAT COMPLUT, V18, P81, DOI [10.5209/rev_REMA.2005.v18.n1.16715, DOI 10.5209/REV_REMA.2005.V18.N1.16715]