Analytical Model for Broadband Thulium-Bismuth-Doped Fiber Amplifier

被引:13
作者
Fatehi, Hossein [1 ]
Emami, Siamak Dawazdah [1 ]
Zarifi, Atiyeh [1 ]
Zahedi, Fatemeh Zahra [1 ]
Mirnia, Seyed Edriss [1 ]
Zarei, Arman [1 ]
Ahmad, Harith [2 ]
Harun, Sulaiman Wadi [1 ,2 ]
机构
[1] Univ Malaya, Dept Elect Engn, Fac Engn, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Dept Phys, Photon Res Ctr, Kuala Lumpur 50603, Malaysia
关键词
2-mu m regions; energy transfer; optical amplifier; Thulium-Bismuth; ENERGY-TRANSFER; LASER;
D O I
10.1109/JQE.2012.2199739
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the tremendous growth in applications for fiber laser in medical science, sensor solution, and light detection and ranging system at 1.8 to 2-mu m region, more research efforts have been directed toward developing highly efficient broadband fiber amplifiers in this range. In order to amplify this region, Thulium-Bismuth-doped fiber amplifier (TBDFA) is proposed in conjunction with 800-nm pumping. Optimal Thulium ion concentration of 4.17 x 10(26) ion/m(3) and Bismuth ion concentration of 2.08 x 10(26) ion/m(3) together with low phonon energy of germanate glass lead to the highest energy transfer rates. Effective energy transfer mechanism from Bismuth to Thulium in addition to the cross relaxation process between Thulium ions results in higher amplification, efficiency, and super broadband amplification in TBDFA. We analytically solve the rate equations of TBDFA including the effect of energy transfer in order to calculate the broadband amplifier gain.
引用
收藏
页码:1052 / 1058
页数:7
相关论文
共 50 条
  • [31] Highly efficient short length Bismuth-based erbium-doped fiber amplifier
    Cheng, X. S.
    Hamida, B. A.
    Arof, H.
    Ahmad, H.
    Harun, S. W.
    LASER PHYSICS, 2011, 21 (10) : 1793 - 1796
  • [32] 67 cm long bismuth-based erbium doped fiber amplifier with wideband operation
    Cheng, X. S.
    Hamida, B. A.
    Naji, A. W.
    Ahmad, H.
    Harun, S. W.
    LASER PHYSICS LETTERS, 2011, 8 (11) : 814 - 817
  • [33] Compact and flat-gain fiber optical amplifier with Hafnia-Bismuth-Erbium co-doped fiber
    Al-Azzawi, Alabbas A.
    Almukhtar, Aya A.
    Reddy, P. H.
    Dutta, D.
    Das, S.
    Dhar, A.
    Paul, M. C.
    Zakaria, U. N.
    Ahmad, H.
    Harun, S. W.
    OPTIK, 2018, 170 : 56 - 60
  • [34] Gain control in L-band erbium-doped fiber amplifier incorporating broadband fiber Bragg grating
    Harun, SW
    Tamchek, N
    Poopalan, P
    Ahmad, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2002, 41 (12B): : L1459 - L1460
  • [35] Watt-level 50 fs Pulse Generation from Thulium-Doped ZBLAN Fiber Amplifier System
    Nomura, Yutaka
    Fuji, Takao
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [36] 1 kW peak power, 110 ns single-frequency thulium doped fiber amplifier at 2050 nm
    Lucas, Erik
    Lombard, Laurent
    Jaouen, Yves
    Bordais, Sylvain
    Canat, Guillaume
    APPLIED OPTICS, 2014, 53 (20) : 4413 - 4419
  • [37] 700 μJ, 100 ns, 20 kHz Pulses from a 1.5 m Thulium-doped Fiber Amplifier
    Abdulfattah, Ali
    Sincore, Alex
    Bradford, Joshua
    Bodnar, Nathan
    Cook, Justin
    Shah, Lawrence
    Richardson, Martin
    LASER TECHNOLOGY FOR DEFENSE AND SECURITY XIV, 2018, 10637
  • [38] 40 dB gain all fiber bismuth-doped amplifier operating in the O-band
    Thipparapu, N. K.
    Wang, Y.
    Umnikov, A. A.
    Barua, P.
    Richardson, D. J.
    Sahu, J. K.
    OPTICS LETTERS, 2019, 44 (09) : 2248 - 2251
  • [39] High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier
    Liu, Jiang
    Xu, Jia
    Liu, Kun
    Tan, Fangzhou
    Wang, Pu
    OPTICS LETTERS, 2013, 38 (20) : 4150 - 4153
  • [40] Operation of a Single-Frequency Bismuth-Doped Fiber Power Amplifier near 1.65 μm
    Gomolka, Grzegorz
    Krajewska, Monika
    Kaleta, Malgorzata
    Khegai, Aleksandr M.
    Alyshev, Sergey V.
    Lobanov, Aleksey S.
    Firstov, Sergei V.
    Nikodem, Michal
    PHOTONICS, 2020, 7 (04)