Well-posedness of the Cauchy problem for the Maxwell-Dirac system in one space dimension

被引:0
作者
Okamoto, Mamoru [1 ]
机构
[1] Kyoto Univ, Sakyo Ku, Kyoto 6068502, Japan
来源
NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS | 2015年 / 64卷
关键词
Maxwell-Dirac system; null structure; local well-poseness; LOCAL EXISTENCE; NULL STRUCTURE; EQUATIONS; REGULARITY; FORMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the range of Sobolev regularity for the Maxwell-Dirac system in 1 + 1 space time dimensions to be well-posed locally. The well-posedness follows from the null form estimates. Outside the range for the well-posedness, we show either the flow map is not continuous or not twice differentiable at zero.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[3]   Local existence for the Maxwell-Dirac equations in three space dimensions [J].
Bournaveas, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (5-6) :693-720
[4]  
Bournaveas N, 2008, DISCRETE CONT DYN S, V20, P605
[5]  
Chadam J.M., 1973, J. Funct. Anal., V13, P173
[6]  
D'Ancona P, 2007, J EUR MATH SOC, V9, P877
[7]  
D'Ancona P, 2010, CONTEMP MATH, V526, P125
[8]   Global well-posedness of the Maxwell-Dirac system in two space dimensions [J].
D'Ancona, Piero ;
Selberg, Sigmund .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (08) :2300-2365
[9]  
D'Ancona P, 2010, AM J MATH, V132, P771