Cellulose-based hybrid glycosilicones via grafted-to metal-catalyzed hydrosilylation: "When opposites unite"

被引:8
作者
Dobrynin, Mikhail, V [1 ]
Kukushkin, Vadim Yu [1 ,2 ,3 ]
Islamova, Regina M. [1 ,2 ]
机构
[1] St Petersburg State Univ, Inst Chem, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
[2] Russian Acad Sci, Inst Macromol Cpds, Bolshoii Pr 31, St Petersburg 199004, Russia
[3] South Ural State Univ, Lenin Av 76, Chelyabinsk 454080, Russia
基金
俄罗斯基础研究基金会;
关键词
Glycosilicone; Hydride-terminated polysiloxane; Propargylated hydroxyethyl cellulose; Hydrosilylation; Karstedt's catalyst; Rh(acac)(CO)(2); CROSS-LINKING; POLYSILOXANES; POLYDIMETHYLSILOXANES; FUNCTIONALITIES; SILOXANES; GLUCOSE; BLOCK; PDMS;
D O I
10.1016/j.carbpol.2020.116327
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Hydrosilylation catalyzed by the rhodium(I) complex [Rh(acac)(CO)(2)] or platinum(0)-based Karstedt's catalyst was employed to combine hydrophilic propargylated hydroxyethyl cellulose and hydrophobic hydride-terminated polydimethylsiloxane to give polymer hybrid structures. The final polymers were characterized by FTIR, solid state H-1, C-13 and Si-29 NMR, contact angle, microcalorimetry and thermogravimetry measurements. The grafting degree was controlled by the catalyst choice and by the reagent load variations; an increase of the polysiloxane load and a change from Karstedt's to the rhodium catalyst led to a higher (from 2 to 7%) silicon content in the glycosilicones. The glycosilicones were insoluble in water, but swelled in organic solvents (DMSO, DMF, and chloroform). The hydrophilicity of the glycosilicones decreased with incrementing silicon content: the contact angles increased from 30 (cellulose) to 103-131 degrees in the hybrids. The glycosilicones obtained via the hydrosilylation are less toxic toward algae Chlorella vulgaris and infusoria Paramecium caudatum than those obtained with CuAAC.
引用
收藏
页数:9
相关论文
共 54 条
[11]   Water Soluble Polysiloxanes [J].
Dewasthale, Sudhanwa ;
Andrews, Caleb ;
Graiver, Daniel ;
Narayan, Ramani .
SILICON, 2017, 9 (04) :619-628
[12]   Rhodium(I)-catalysed cross-linking of polysiloxanes conducted at room temperature [J].
Dobrynin, Mikhail V. ;
Pretorius, Carla ;
Kama, Dumisani V. ;
Roodt, Andreas ;
Boyarskiy, Vadim P. ;
Islamova, Regina M. .
JOURNAL OF CATALYSIS, 2019, 372 :193-200
[13]  
Dupont J. S., 2003, [No title captured], Patent No. [WO03050144A1, 03050144]
[14]   A versatile method for functionalization and grafting of 2-hydroxyethyl cellulose (HEC) via Click chemistry [J].
Eissa, Ahmed M. ;
Khosravi, Ezat ;
Cimecioglu, A. Levent .
CARBOHYDRATE POLYMERS, 2012, 90 (02) :859-869
[15]   Polydimethylsiloxane-modified chitosan I. Synthesis and structural characterisation of graft and crosslinked copolymers [J].
Enescu, Daniela ;
Hamciuc, Viorica ;
Pricop, Lucia ;
Hamaide, Thierry ;
Harabagiu, Valeria ;
Simionescu, Bogdan C. .
JOURNAL OF POLYMER RESEARCH, 2009, 16 (01) :73-80
[16]   Glycosilicones [J].
Fitremann, Juliette ;
Moukarzel, Wael ;
Mauzac, Monique .
SILICON BASED POLYMERS: ADVANCES IN SYNTHESIS AND SUPRAMOLECULAR ORGANIZATION, 2008, :181-202
[17]  
Griffin R J, 1994, Prog Med Chem, V31, P121, DOI 10.1016/S0079-6468(08)70020-1
[18]   Syntheses of well-defined glyco-polyorganosiloxanes by "click" chemistry and their surfactant properties [J].
Halila, Sami ;
Manguian, Maggy ;
Fort, Sebastien ;
Cottaz, Sylvain ;
Hamaide, Thierry ;
Fleury, Etienne ;
Driguez, Hugues .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2008, 209 (12) :1282-1290
[19]   Flame retardancy of silicone-based materials [J].
Hamdani, Siska ;
Longuet, Claire ;
Perrin, Didier ;
Lopez-cuesta, Jose-Marie ;
Ganachaud, Francois .
POLYMER DEGRADATION AND STABILITY, 2009, 94 (04) :465-495
[20]   Carbohydrate modified polydimethylsiloxanes. Part 1. Synthesis and characterization of carbohydrate silane and siloxane building blocks [J].
Haupt, M ;
Knaus, S ;
Rohr, T ;
Gruber, H .
JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 2000, 37 (04) :323-341