Federated Learning for Electronic Health Records

被引:38
作者
Dang, Trung Kien [1 ]
Lan, Xiang [1 ]
Weng, Jianshu [2 ]
Feng, Mengling [1 ,3 ]
机构
[1] Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Tahir Fdn Bldg,12 Sci Dr 2,10-01, Singapore 117549, Singapore
[2] AI Singapore, Innovat 4-0,3 Res Link,02-05, Singapore 117602, Singapore
[3] Natl Univ Singapore, Inst Data Sci, Innovat 4-0,3 Res Link,04-06, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Federated learning; electronic health records; healthcare; neural networks; CLINICAL-RESEARCH; CARE; PRIVACY; MODELS; FEASIBILITY; REGULATIONS; MORTALITY; MULTIPLE; DATABASE; SOCIETY;
D O I
10.1145/3514500
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In data-driven medical research, multi-center studies have long been preferred over single-center ones due to a single institute sometimes not having enough data to obtain sufficient statistical power for certain hypothesis testings as well as predictive and subgroup studies. The wide adoption of electronic health records (EHRs) has made multi-institutional collaboration much more feasible. However, concerns over infrastructures, regulations, privacy, and data standardization present a challenge to data sharing across healthcare institutions. Federated Learning (FL), which allows multiple sites to collaboratively train a global model without directly sharing data, has become a promising paradigm to break the data isolation. In this study, we surveyed existing works on FL applications in EHRs and evaluated the performance of current state-of-the-art FL algorithms on two EHR machine learning tasks of significant clinical importance on a real world multi-center EHR dataset.
引用
收藏
页数:17
相关论文
共 50 条
[11]   Towards a New Paradigm of Federated Electronic Health Records in Palestine [J].
El Jabari, Carol ;
Macedo, Mario ;
Al-jabari, Mohanad O. .
INFORMATICS-BASEL, 2020, 7 (04)
[12]   Privacy-Preserving Federated Learning Framework for Multi-Source Electronic Health Records Prognosis Prediction [J].
Zhao, Huiya ;
Sui, Dehao ;
Wang, Yasha ;
Ma, Liantao ;
Wang, Ling .
SENSORS, 2025, 25 (08)
[13]   Representation Learning for Electronic Health Records: A Survey [J].
Chen, Peiying .
2020 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND ARTIFICIAL INTELLIGENCE (CCEAI 2020), 2020, 1487
[14]   Deep Learning for Electronic Health Records Analytics [J].
Harerimana, Gaspard ;
Kim, Jong Wook ;
Yoo, Hoon ;
Jang, Beakcheol .
IEEE ACCESS, 2019, 7 :101245-101259
[15]   Quantitative risk analysis of treatment plans for patients with tumor by mining historical similar patients from electronic health records using federated learning [J].
Liu, Yang ;
Bi, Donghai .
RISK ANALYSIS, 2023, 43 (12) :2422-2449
[16]   Cardea: An Open Automated Machine Learning Framework for Electronic Health Records [J].
Alnegheimish, Sarah ;
Alrashed, Najat ;
Aleissa, Faisal ;
Althobaiti, Shahad ;
Liu, Dongyu ;
Alsaleh, Mansour ;
Veeramachaneni, Kalyan .
2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, :536-545
[17]   FedWeight: mitigating covariate shift of federated learning on electronic health records data through patients re-weighting [J].
Zhu, He ;
Bai, Jun ;
Li, Na ;
Li, Xiaoxiao ;
Liu, Dianbo ;
Buckeridge, David L. ;
Li, Yue .
NPJ DIGITAL MEDICINE, 2025, 8 (01)
[18]   Deep Stable Representation Learning on Electronic Health Records [J].
Luo, Yingtao ;
Liu, Zhaocheng ;
Liu, Qiang .
2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, :1077-1082
[19]   Scalable and accurate deep learning with electronic health records [J].
Rajkomar, Alvin ;
Oren, Eyal ;
Chen, Kai ;
Dai, Andrew M. ;
Hajaj, Nissan ;
Hardt, Michaela ;
Liu, Peter J. ;
Liu, Xiaobing ;
Marcus, Jake ;
Sun, Mimi ;
Sundberg, Patrik ;
Yee, Hector ;
Zhang, Kun ;
Zhang, Yi ;
Flores, Gerardo ;
Duggan, Gavin E. ;
Irvine, Jamie ;
Quoc Le ;
Litsch, Kurt ;
Mossin, Alexander ;
Tansuwan, Justin ;
Wang, De ;
Wexler, James ;
Wilson, Jimbo ;
Ludwig, Dana ;
Volchenboum, Samuel L. ;
Chou, Katherine ;
Pearson, Michael ;
Madabushi, Srinivasan ;
Shah, Nigam H. ;
Butte, Atul J. ;
Howell, Michael D. ;
Cui, Claire ;
Corrado, Greg S. ;
Dean, Jeffrey .
NPJ DIGITAL MEDICINE, 2018, 1
[20]   Electronic health records: new opportunities for clinical research [J].
Coorevits, P. ;
Sundgren, M. ;
Klein, G. O. ;
Bahr, A. ;
Claerhout, B. ;
Daniel, C. ;
Dugas, M. ;
Dupont, D. ;
Schmidt, A. ;
Singleton, P. ;
De Moor, G. ;
Kalra, D. .
JOURNAL OF INTERNAL MEDICINE, 2013, 274 (06) :547-560