Federated Learning for Electronic Health Records

被引:38
作者
Dang, Trung Kien [1 ]
Lan, Xiang [1 ]
Weng, Jianshu [2 ]
Feng, Mengling [1 ,3 ]
机构
[1] Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Tahir Fdn Bldg,12 Sci Dr 2,10-01, Singapore 117549, Singapore
[2] AI Singapore, Innovat 4-0,3 Res Link,02-05, Singapore 117602, Singapore
[3] Natl Univ Singapore, Inst Data Sci, Innovat 4-0,3 Res Link,04-06, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Federated learning; electronic health records; healthcare; neural networks; CLINICAL-RESEARCH; CARE; PRIVACY; MODELS; FEASIBILITY; REGULATIONS; MORTALITY; MULTIPLE; DATABASE; SOCIETY;
D O I
10.1145/3514500
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In data-driven medical research, multi-center studies have long been preferred over single-center ones due to a single institute sometimes not having enough data to obtain sufficient statistical power for certain hypothesis testings as well as predictive and subgroup studies. The wide adoption of electronic health records (EHRs) has made multi-institutional collaboration much more feasible. However, concerns over infrastructures, regulations, privacy, and data standardization present a challenge to data sharing across healthcare institutions. Federated Learning (FL), which allows multiple sites to collaboratively train a global model without directly sharing data, has become a promising paradigm to break the data isolation. In this study, we surveyed existing works on FL applications in EHRs and evaluated the performance of current state-of-the-art FL algorithms on two EHR machine learning tasks of significant clinical importance on a real world multi-center EHR dataset.
引用
收藏
页数:17
相关论文
共 86 条
[1]   A Survey on Homomorphic Encryption Schemes: Theory and Implementation [J].
Acar, Abbas ;
Aksu, Hidayet ;
Uluagac, A. Selcuk ;
Conti, Mauro .
ACM COMPUTING SURVEYS, 2018, 51 (04)
[2]   HIPAA regulations - A new era of medical-record privacy? [J].
Annas, GJ .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (15) :1486-1490
[3]   Scalable and Secure Logistic Regression via Homomorphic Encryption [J].
Aono, Yoshinori ;
Hayashi, Takuya ;
Le Trieu Phong ;
Wang, Lihua .
CODASPY'16: PROCEEDINGS OF THE SIXTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY, 2016, :142-144
[4]   Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach [J].
Awad, Aya ;
Bader-El-Den, Mohamed ;
McNicholas, James ;
Briggs, Jim .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2017, 108 :185-195
[5]   Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group [J].
Bellomo, R ;
Ronco, C ;
Kellum, JA ;
Mehta, RL ;
Palevsky, P .
CRITICAL CARE, 2004, 8 (04) :R204-R212
[6]  
Boughorbel S., 2019, arXiv
[7]  
Boyd Kendrick, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8190, P451, DOI 10.1007/978-3-642-40994-3_29
[8]   Federated learning of predictive models from federated Electronic Health Records [J].
Brisimi, Theodora S. ;
Chen, Ruidi ;
Mela, Theofanie ;
Olshevsky, Alex ;
Paschalidis, Ioannis Ch. ;
Shi, Wei .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2018, 112 :59-67
[9]   Distributed deep learning networks among institutions for medical imaging [J].
Chang, Ken ;
Balachandar, Niranjan ;
Lam, Carson ;
Yi, Darvin ;
Brown, James ;
Beers, Andrew ;
Rosen, Bruce ;
Rubin, Daniel L. ;
Kalpathy-Cramer, Jayashree .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (08) :945-954
[10]   Privacy Protection and Intrusion Avoidance for Cloudlet-Based Medical Data Sharing [J].
Chen, Min ;
Qian, Yongfeng ;
Chen, Jing ;
Hwang, Kai ;
Mao, Shiwen ;
Hu, Long .
IEEE TRANSACTIONS ON CLOUD COMPUTING, 2020, 8 (04) :1274-1283