Modification of lithium electrodeposition behavior by variation of electrode distance

被引:17
作者
Chae, Oh B. [1 ]
Kim, Jongjung [1 ]
Lucht, Brett L. [1 ]
机构
[1] Univ Rhode Isl, Dept Chem, Kingston, RI 02881 USA
关键词
Electrochemical deposition; Distance; Lithium dendrite; Lithium growth; Lithium metal batteries; Solid electrolyte interphase; CARBONATE ELECTROLYTES; FLUOROETHYLENE CARBONATE; LI METAL; PERFORMANCE; INTERPHASE; BATTERIES; ANODES; NANOSTRUCTURE; MECHANISMS; NITRATE;
D O I
10.1016/j.jpowsour.2022.231338
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing a better understanding and control over the lithium electrodeposition behavior will assist with the commercial application of lithium metal anodes for rechargeable batteries. Despite intensive research over the past decade, our understanding of the deposition of lithium is limited. Here a new observation on the effect of distance between the working electrode and the counter electrode for electrochemical lithium deposition behavior is reported. From this fundamental investigation of distance, the high lithium ion concentration regions formed by release of lithium ions from the counter electrode modify the lithium deposition behavior on the working electrode, resulting in the generation of non-uniform lithium dendrites with a thick diversely composed surface film. Alternatively, increasing the distance between the electrodes results in the deposition of a spherical lithium morphology with a thin LiF rich surface film. This fundamental study provides a deeper understanding of correlation between lithium deposition behavior and electrode separation and provides insight to inhibit lithium dendrite formation.
引用
收藏
页数:8
相关论文
共 54 条
[41]   A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase [J].
Tan, Jian ;
Matz, John ;
Dong, Pei ;
Shen, Jianfeng ;
Ye, Mingxin .
ADVANCED ENERGY MATERIALS, 2021, 11 (16)
[42]   Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy [J].
Wang, Jiangyan ;
Huang, William ;
Pei, Allen ;
Li, Yuzhang ;
Shi, Feifei ;
Yu, Xiaoyun ;
Cui, Yi .
NATURE ENERGY, 2019, 4 (08) :664-670
[43]  
Wang QD, 2020, NAT COMMUN, V11, DOI [10.1038/s41467-020-17976-x, 10.1038/s41467-020-14395-w]
[44]   Lithium and lithium ion batteries for applications in microelectronic devices: A review [J].
Wang, Yuxing ;
Liu, Bo ;
Li, Qiuyan ;
Cartmell, Samuel ;
Ferrara, Seth ;
Deng, Zhiqun Daniel ;
Xiao, Jie .
JOURNAL OF POWER SOURCES, 2015, 286 :330-345
[45]   Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes [J].
Wei, Shuya ;
Cheng, Zhu ;
Nath, Pooja ;
Tikekar, Mukul D. ;
Li, Gaojin ;
Archer, Lynden A. .
SCIENCE ADVANCES, 2018, 4 (03)
[46]   The interplay between solid electrolyte interface (SEI) and dendritic lithium growth [J].
Wu, Bingbin ;
Lochala, Joshua ;
Taverne, Tyler ;
Xiao, Jie .
NANO ENERGY, 2017, 40 :34-41
[47]   How lithium dendrites form in liquid batteries [J].
Xiao, Jie .
SCIENCE, 2019, 366 (6464) :426-427
[48]   Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J].
Xu, K .
CHEMICAL REVIEWS, 2004, 104 (10) :4303-4417
[49]   Lithium metal anodes for rechargeable batteries [J].
Xu, Wu ;
Wang, Jiulin ;
Ding, Fei ;
Chen, Xilin ;
Nasybutin, Eduard ;
Zhang, Yaohui ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :513-537
[50]   Temperature-dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes [J].
Yan, Kang ;
Wang, Jiangyan ;
Zhao, Shuoqing ;
Zhou, Dong ;
Sun, Bing ;
Cui, Yi ;
Wang, Guoxiu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (33) :11364-11368