A general approach for high yield fabrication of CMOS-compatible all-semiconducting carbon nanotube field effect transistors

被引:13
|
作者
Islam, Muhammad R. [1 ,2 ]
Kormondy, Kristy J. [1 ,2 ]
Silbar, Eliot [1 ,2 ]
Khondaker, Saiful I. [1 ,2 ,3 ]
机构
[1] Univ Cent Florida, Nanosci Technol Ctr, Orlando, FL 32826 USA
[2] Univ Cent Florida, Dept Phys, Orlando, FL 32826 USA
[3] Univ Cent Florida, Sch Elect Engn & Comp Sci, Orlando, FL 32826 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; SINGLE; DIELECTROPHORESIS; DENSITY; PERFORMANCE; DISPERSION; DIAMETER; MOBILITY; GROWTH; ARRAYS;
D O I
10.1088/0957-4484/23/12/125201
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report strategies to achieve both high assembly yield of carbon nanotubes at selected positions of the circuit via dielectrophoresis (DEP) and field effect transistor (FET) yield using an aqueous solution of semiconducting-enriched single-walled carbon nanotubes (s-SWNTs). When the DEP parameters were optimized for the assembly of individual s-SWNTs, 97% of the devices showed FET behavior with a maximum mobility of 210 cm(2) V-1 s(-1), on-off current ratio similar to 10(6) and on-conductance up to 3 mu S, but with an assembly yield of only 33%. As the DEP parameters were optimized so that one to five s-SWNTs are connected per electrode pair, the assembly yield was almost 90%, with similar to 90% of these assembled devices demonstrating FET behavior. Further optimization gave an assembly yield of 100% with up to 10 SWNTs per site, but with a reduced FET yield of 59%. Improved FET performance including higher current on-off ratio and high switching speed were obtained by integrating a local Al2O3 gate to the device. Our 90% FET with 90% assembly yield is the highest reported so far for carbon nanotube devices. Our study provides a pathway which could become a general approach for the high yield fabrication of complementary metal oxide semiconductor (CMOS)-compatible carbon nanotube FETs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Scalable, CMOS-Compatible Assembly of Ambipolar Semiconducting Single-Walled Carbon Nanotube Devices
    Ganzhorn, Marc
    Vijayaraghavan, Aravind
    Green, Alexander A.
    Dehm, Simone
    Voigt, Achim
    Rapp, Michael
    Hersam, Mark C.
    Krupke, Ralph
    ADVANCED MATERIALS, 2011, 23 (15) : 1734 - +
  • [2] CMOS-Compatible GaN-on-Si Field-Effect Transistors for High Voltage Power Applications
    Kwan, Man Ho
    Wong, K. -Y.
    Lin, Y. S.
    Yao, F. W.
    Tsai, M. W.
    Chang, Y. -C.
    Chen, P. C.
    Su, R. Y.
    Wu, C. -H.
    Yu, J. L.
    Yang, F. J.
    Lansbergen, G. P.
    Wu, H. -Y.
    Lin, M. -C.
    Wu, C. B.
    Lai, Y. -A.
    Hsiung, C. -W.
    Liu, P. -C.
    Chiu, H. -C.
    Chen, C. -M.
    Yu, C. Y.
    Lin, H. S.
    Chang, M. -H.
    Wang, S. -P.
    Chen, L. C.
    Tsai, J. L.
    Tuan, H. C.
    Kalnitsky, Alex
    2014 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2014,
  • [3] A process for high yield and high performance carbon nanotube field effect transistors
    Lee, Tseng-Chin
    Tsui, Bing-Yue
    Tzeng, Pei-Jer
    Wang, Ching-Chiun
    Tsai, Ming-Jinn
    MICROELECTRONICS RELIABILITY, 2010, 50 (05) : 666 - 669
  • [4] A CMOS-Compatible Fabrication Approach for High-Performance Perovskite Photodetector Arrays
    Wu, Erfu
    Tsarev, Sergey
    Proniakova, Daria
    Liu, Xuqi
    Bachmann, Dominik
    Yakunin, Sergii
    Kovalenko, Maksym V.
    Shorubalko, Ivan
    ADVANCED OPTICAL MATERIALS, 2025, 13 (10):
  • [5] Wafer-scale CMOS-compatible graphene Josephson field-effect transistors
    Generalov, Andrey A.
    Viisanen, Klaara L.
    Senior, Jorden
    Ferreira, Bernardo R.
    Ma, Jian
    Moettoenen, Mikko
    Prunnila, Mika
    Bohuslavskyi, Heorhii
    APPLIED PHYSICS LETTERS, 2024, 125 (01)
  • [6] Gigahertz Field-Effect Transistors with CMOS-Compatible Transfer-Free Graphene
    Yeh, Chao-Hui
    Teng, Po-Yuan
    Chiu, Yu-Chiao
    Hsiao, Wen-Ting
    Hsu, Shawn S. H.
    Chiu, Po-Wen
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (06) : 6336 - 6343
  • [7] NP Dynamic CMOS Resurrection with Carbon Nanotube Field Effect Transistors
    Sun, Yanan
    Kursun, VoIkan
    2012 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2012, : 13 - 16
  • [8] Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
    Wang, Xinran
    Ouyang, Yijian
    Li, Xiaolin
    Wang, Hailiang
    Guo, Jing
    Dai, Hongjie
    PHYSICAL REVIEW LETTERS, 2008, 100 (20)
  • [9] Wafer scale fabrication of carbon nanotube thin film transistors with high yield
    Tian, Boyuan
    Liang, Xuelei
    Yan, Qiuping
    Zhang, Han
    Xia, Jiye
    Dong, Guodong
    Peng, Lianmao
    Xie, Sishen
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (03)
  • [10] Fabrication of antigen sensors using carbon nanotube field effect transistors
    Tani, Kentaro
    Ito, Hiroshi
    Ohno, Yutaka
    Kishimoto, Shigeru
    Okochi, Mina
    Honda, Hiroyuki
    Mizutani, Takashi
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (6B): : 5481 - 5484