SiPM dynamic range for CEPC scintillator-based electromagnetic calorimeter

被引:0
|
作者
Niu, Y. [1 ,2 ,3 ]
Shi, Y. [1 ,2 ,3 ]
Zhao, H. [4 ]
Zhang, Y. [1 ,2 ,3 ]
Ruan, M. [4 ]
Liu, J. [1 ,2 ,3 ]
机构
[1] State Key Lab Particle Detect & Elect, Beijing 100049, Peoples R China
[2] State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[4] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
来源
JOURNAL OF INSTRUMENTATION | 2021年 / 16卷 / 12期
基金
中国国家自然科学基金;
关键词
Calorimeter methods; Calorimeters; Scintillators; scintillation and light emission processes (solid; gas and liquid scintillators);
D O I
10.1088/1748-0221/16/12/T12008
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A high-granularity scintillator calorimeter readout with silicon photomultipliers (SiPMs) is an electromagnetic calorimeter (ECAL) candidate for experiments at the Circular Electron Positron Collider (CEPC). A critical design parameter of this ECAL candidate is the dynamic range of the SiPMs. This study investigates the SiPM dynamic range required for the CEPC scintillator ECAL. A model is developed on the basis of the operation principles of SiPMs to describe the response of an SiPM to light pulses within one recovery period by considering the cross-talk effect, photon detection efficiency, and number of pixels. The response curve of a 10000-pixel SiPM predicted by the model is consistent with the measured curve within 2% for an incident light pulse of up to 12000 photons. The intrinsic fluctuations of the SiPM response naturally exist in this model, and the correction of the saturation effect in the SiPM response is investigated. Monte Carlo (MC) simulation shows that the algorithm can restore the response linearity of an SiPM for an incident light pulse in which the number of photons is up to around six times the number of SiPM pixels. The model and correction program are implemented for full simulation of the ZH production Z -> nu nu H -> gamma gamma channel to evaluate the impact of the SiPM dynamic range of the CEPC scintillator ECAL on the reconstructed Higgs boson mass and the sensitivity to the Higgs signal in this channel. The results show that the CEPC scintillator ECAL equipped with no less than 4000 SiPM pixels and operated with a light yield of 20 photon-electrons per channel for a single minimum ionizing particle can meet the requirements for Higgs boson precision measurement in the di-photon channel at the CEPC.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A novel high dynamic-range SiPM for scintillator-based hadronic calorimetry
    Jiang, J.
    Yu, B.
    Liu, J.
    Zhao, S.
    Hu, T.
    Niu, Y.
    Liu, Y.
    Shi, Y.
    Wang, Y.
    Zhang, Y.
    Wang, Z.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (06)
  • [2] Construction and response of a highly granular scintillator-based electromagnetic calorimeter
    Repond, J.
    Xia, L.
    Eigen, G.
    Price, T.
    Watson, N. K.
    Winter, A.
    Thomson, M. A.
    Carloganu, C.
    Blazey, G. C.
    Dyshkant, A.
    Francis, K.
    Zutshi, V.
    Gadow, K.
    Gottlicher, P.
    Hartbrich, O.
    Kotera, K.
    Krivan, F.
    Krueger, K.
    Lu, S.
    Lutz, B.
    Reinecke, M.
    Sefkow, F.
    Sudo, Y.
    Tran, H. L.
    Kaplan, A.
    Schultz-Coulon, H. -Ch.
    Bilki, B.
    Northacker, D.
    Onel, Y.
    Wilson, G. W.
    Kawagoe, K.
    Sekiya, I.
    Suehara, T.
    Yamashiro, H.
    Yoshioka, T.
    Calvo Alamillo, E.
    Fouz, M. C.
    Marin, J.
    Navarrete, J.
    Puerta Pelayo, J.
    Verdugo, A.
    Chadeeva, M.
    Danilov, M.
    Gabriel, M.
    Goecke, P.
    Graf, C.
    Israeli, Y.
    van der Kolk, N.
    Simon, F.
    Szalay, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 887 : 150 - 168
  • [3] The Next Generation Scintillator-based Electromagnetic Calorimeter Prototype and Beam Test
    Khan, Adil
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON TECHNOLOGY AND INSTRUMENTATION IN PARTICLE PHYSICS (TIPP 2011), 2012, 37 : 244 - 249
  • [4] Development and commissioning of a technological prototype of a highly-granular scintillator-based electromagnetic calorimeter
    Niu, Yazhou
    Zhao, Shensen
    Tsuji, Naoki
    Zhou, Anshun
    Shi, Yukun
    Zhang, Yunlong
    Wang, Zhigang
    Shen, Zhongtao
    Dong, Mingyi
    Wang, Ruijie
    Masuda, Ryunosuke
    Murata, Tatsuki
    Liu, Jianbei
    Liu, Shubin
    Ootani, Wataru
    Takeshita, Tohru
    Liu, Yong
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2025, 1073
  • [5] Design and test for the CEPC muon subdetector based on extruded scintillator and SiPM
    Zhang, Hongyu
    Wang, Xiyang
    Ma, Weihu
    Zou, Shiming
    Fang, Deqing
    He, Wanbing
    Wang, Xiaolong
    Wang, Zhen
    Yuan, Rui
    Zheng, Qibin
    JOURNAL OF INSTRUMENTATION, 2024, 19 (06):
  • [6] Prototype tests for a highly granular scintillator-based hadron calorimeter
    Krueger, K.
    16TH INTERNATIONAL CONFERENCE ON CALORIMETRY IN HIGH ENERGY PHYSICS (CALOR 2014), 2015, 587
  • [7] Design and optimization of the CEPC scintillator hadronic calorimeter
    Shi, Yukun
    Zhang, Yunlong
    Ruan, Manqi
    Liu, Jianbei
    JOURNAL OF INSTRUMENTATION, 2022, 17 (11)
  • [8] A scintillator-based range telescope for particle therapy
    Kelleter, Laurent
    Radogna, Raffaella
    Volz, Lennart
    Attree, Derek
    Basharina-Freshville, Anastasia
    Seco, Joao
    Saakyan, Ruben
    Jolly, Simon
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (16):
  • [9] Scintillator tile hadron calorimeter with novel SiPM readout
    Danilov, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 581 (1-2): : 451 - 456
  • [10] Study on Readout Electronics of CEPC Scintillator Analog Hadronic Calorimeter Prototype
    Shen, Zhongtao
    Liu, Shubin
    Zhou, Anshun
    Liu, Hao
    Shi, Yukun
    Zhang, Yunlong
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2025, 72 (03) : 333 - 338