A REGULARITY CRITERION FOR THE NAVIER-STOKES EQUATIONS IN TERMS OF THE HORIZONTAL DERIVATIVES OF THE TWO VELOCITY COMPONENTS

被引:0
作者
Chen, Wenying [1 ]
Gala, Sadek [2 ]
机构
[1] Chongqing Three Gorges Univ, Coll Math & Comp Sci, Chongqing 404000, Peoples R China
[2] Univ Mostaganem, Dept Math, Mostaganem 27000, Algeria
关键词
Navier-Stokes equations; Leray-Hopf weak solutions; regularity criterion; WEAK SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the regularity for weak solutions to the Navier-Stokes equations in R-3. It is proved that if the horizontal derivatives of the two velocity components del(h)(u) over tilde is an element of L2/(2-r) (0, T; (M) over dot(2,3/r)(R-3)), for 0 < r < 1, then the weak solution is actually strong, where (M) over dot(2,3/r) is the critical Morrey-Campanato space and (u) over tilde = (u(1), u(2), 0), del(h)(u) over tilde = (partial derivative(1)u(1), partial derivative(2)u(2), 0).
引用
收藏
页数:7
相关论文
共 19 条
[11]  
Lemarié-Rieusset PG, 2007, REV MAT IBEROAM, V23, P897
[12]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[13]   Interpolation inequalities in Besov spaces [J].
Machihara, S ;
Ozawa, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) :1553-1556
[14]  
Pokorn M., 2003, Electron. J. Diff. Equ, V2003, P1
[15]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187
[17]   A new regularity criterion for weak solutions to the Navier-Stokes equations [J].
Zhou, Y .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (11) :1496-1514
[18]   On the regularity of the solutions of the Navier-Stokes equations via one velocity component [J].
Zhou, Yong ;
Pokorny, Milan .
NONLINEARITY, 2010, 23 (05) :1097-1107
[19]   On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component [J].
Zhou, Yong ;
Pokorny, Milan .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)