A REGULARITY CRITERION FOR THE NAVIER-STOKES EQUATIONS IN TERMS OF THE HORIZONTAL DERIVATIVES OF THE TWO VELOCITY COMPONENTS

被引:0
作者
Chen, Wenying [1 ]
Gala, Sadek [2 ]
机构
[1] Chongqing Three Gorges Univ, Coll Math & Comp Sci, Chongqing 404000, Peoples R China
[2] Univ Mostaganem, Dept Math, Mostaganem 27000, Algeria
关键词
Navier-Stokes equations; Leray-Hopf weak solutions; regularity criterion; WEAK SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the regularity for weak solutions to the Navier-Stokes equations in R-3. It is proved that if the horizontal derivatives of the two velocity components del(h)(u) over tilde is an element of L2/(2-r) (0, T; (M) over dot(2,3/r)(R-3)), for 0 < r < 1, then the weak solution is actually strong, where (M) over dot(2,3/r) is the critical Morrey-Campanato space and (u) over tilde = (u(1), u(2), 0), del(h)(u) over tilde = (partial derivative(1)u(1), partial derivative(2)u(2), 0).
引用
收藏
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 2002, Methods Appl. Anal.
[2]  
[Anonymous], ACTA MATH S IN PRESS
[3]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[4]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[5]   The BKM criterion for the 3D Navier-Stokes equations via two velocity components [J].
Dong, Bo-Qing ;
Zhang, Zhifei .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) :2415-2421
[6]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[7]  
Kato T., 1992, Bol. Soc. Bras. Mat., Nova Ser., V22, P127, DOI 10.1007/BF01232939
[8]   One component regularity for the Navier-Stokes equations [J].
Kukavica, I ;
Ziane, M .
NONLINEARITY, 2006, 19 (02) :453-469
[9]   Multipliers between Sobolev spaces and fractional differentiation [J].
Lemarie-Rieusset, P. G. ;
Gala, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :1030-1054
[10]  
Lemarie-Rieusset P.-G., 2002, Research Notes in Mathematics, V431