Explicit Runge-Kutta methods for initial value problems with oscillating solutions

被引:22
作者
Calvo, M [1 ]
Franco, JM [1 ]
Montijano, JI [1 ]
Randez, L [1 ]
机构
[1] UNIV ZARAGOZA,DEPT MATEMAT APLICADA,E-50009 ZARAGOZA,SPAIN
关键词
Runge-Kutta methods; periodic initial value problems; dispersion and dissipation errors;
D O I
10.1016/S0377-0427(96)00103-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New pairs of embedded Runge-Kutta methods specially adapted to the numerical solution of first order systems of differential equations which are assumed to possess oscillating solutions are obtained. These pairs have been derived taking into account not only the usual properties of accuracy, stability and reliability of the local error estimator to adjust the stepsize of the underlying formulas but also the dispersion and dissipation orders of the advancing formula as defined by Van der Houwen and Sommeijer (1989). Three nine-stage embedded pairs of Runge-Kutta methods with algebraic orders 7 and 5 and higher orders of dispersion and/or dissipation are selected among the members of a family of pairs depending on several free parameters. Some numerical results are presented to show the efficiency of the new methods.
引用
收藏
页码:195 / 212
页数:18
相关论文
共 13 条
[1]   A ONE-STEP METHOD FOR DIRECT INTEGRATION OF STRUCTURAL DYNAMIC EQUATIONS [J].
BRUSA, L ;
NIGRO, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (05) :685-699
[2]  
Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
[3]   A POLYVALENT RUNGE-KUTTA TRIPLE [J].
CALVO, M ;
MONTIJANO, JI ;
RANDEZ, L .
APPLIED NUMERICAL MATHEMATICS, 1994, 15 (01) :13-26
[4]  
Fehlberg E., 1968, R287 NASA
[5]  
HAIRER E., 1987, SOLVING ORDINARY DIF
[6]   Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics [J].
Hu, FQ ;
Hussaini, MY ;
Manthey, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (01) :177-191
[7]  
Prince P.J., 1981, Journal of Computational and Applied Mathematics, V7, P67, DOI [10.1016/0771-050X(81)90010-3, DOI 10.1016/0771-050X(81)90010-3]
[8]   2-STAGE AND 3-STAGE DIAGONALLY IMPLICIT RUNGE-KUTTA NYSTROM METHODS OF ORDERS 3 AND 4 [J].
SHARP, PW ;
FINE, JM ;
BURRAGE, K .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (04) :489-504
[9]   A LOW-ORDER EMBEDDED RUNGE-KUTTA METHOD FOR PERIODIC INITIAL-VALUE PROBLEMS [J].
SIDERIDIS, AB ;
SIMOS, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 44 (02) :235-244
[10]   DIAGONALLY IMPLICIT RUNGE-KUTTA-NYSTROM METHODS FOR OSCILLATORY PROBLEMS [J].
VANDERHOUWEN, PJ ;
SOMMEIJER, BP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (02) :414-429