On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces

被引:8
作者
Sulaiman, Samira [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
axisymmetric flows; critical Besov spaces; global well-posedness; WELL-POSEDNESS;
D O I
10.3233/ASY-2011-1074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the global existence and uniqueness results for the three-dimensional Boussinesq system with axisymmetric initial data upsilon(0) is an element of B-2,1(5/2)(R-3) and rho(0) is an element of B-2,1(1/2)(R-3) boolean AND L-p(R-3) with p > 6. This system couples the incompressible Euler equations with a transport-diffusion equation governing the density. In this case the Beale-Kato-Majda criterion (see [2]) is not known to be valid and to circumvent this difficulty we use in a crucial way some geometric properties of the vorticity.
引用
收藏
页码:89 / 121
页数:33
相关论文
共 50 条
[41]   Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior [J].
Iwabuchi, Tsukasa .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (03) :687-713
[42]   GLOBAL SOLUTIONS TO CHEMOTAXIS-NAVIER-STOKES EQUATIONS IN CRITICAL BESOV SPACES [J].
Yang, Minghua ;
Fu, Zunwei ;
Sun, Jinyi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08) :3427-3460
[43]   Global existence and decay estimates of solutions to the MHD-Boussinesq system with stratification effects [J].
Li, Xinliang ;
Tan, Zhong ;
Xu, Saiguo .
NONLINEARITY, 2022, 35 (12) :6067-6097
[44]   Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces [J].
Zhai, Xiaoping ;
Li, Yongsheng ;
Yan, Wei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) :179-195
[45]   Existence of mild solutions for a Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces [J].
Iwabuchi, Tsukasa ;
Kawakami, Tatsuki .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (04) :464-489
[46]   Global Existence for the N Body Euler-Poisson System [J].
Parmeshwar, Shrish .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 244 (02) :157-208
[47]   Local Well-Posedness of a Two-Component Novikov System in Critical Besov Spaces [J].
Guo, Min ;
Wang, Fang ;
Yu, Shengqi .
MATHEMATICS, 2022, 10 (07)
[48]   Global well-posedness and asymptotic behavior in critical spaces for the compressible Euler system with velocity alignment [J].
Bai, Xiang ;
Miao, Qianyun ;
Tan, Changhui ;
Xue, Liutang .
NONLINEARITY, 2024, 37 (02)
[49]   On the global existence and time decay estimates in critical spaces for the Navier-Stokes-Poisson system [J].
Chikami, Noboru ;
Danchin, Raphael .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (13) :1939-1970
[50]   Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces [J].
Yang, MingHua ;
Fu, ZunWei ;
Sun, JinYi .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (10) :1837-1856