On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces

被引:8
作者
Sulaiman, Samira [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
axisymmetric flows; critical Besov spaces; global well-posedness; WELL-POSEDNESS;
D O I
10.3233/ASY-2011-1074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the global existence and uniqueness results for the three-dimensional Boussinesq system with axisymmetric initial data upsilon(0) is an element of B-2,1(5/2)(R-3) and rho(0) is an element of B-2,1(1/2)(R-3) boolean AND L-p(R-3) with p > 6. This system couples the incompressible Euler equations with a transport-diffusion equation governing the density. In this case the Beale-Kato-Majda criterion (see [2]) is not known to be valid and to circumvent this difficulty we use in a crucial way some geometric properties of the vorticity.
引用
收藏
页码:89 / 121
页数:33
相关论文
共 50 条
[31]   Global existence theorem for the 3-D generalized micropolar fluid system in critical Fourier-Besov-Morrey spaces with variable exponent [J].
Ouidirne, Fatima ;
Allalou, Chakir ;
Oukessou, Mohamed .
FILOMAT, 2024, 38 (20) :7161-7171
[32]   Global existence of solutions for Boussinesq system with energy dissipation [J].
Amorim, Charles Braga ;
de Almeida, Marcelo Fernandes ;
Mateus, Eder .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
[33]   Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces [J].
Liu, Lvqiao ;
Tan, Jin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 :382-413
[34]   Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity [J].
Miao, Changxing ;
Zheng, Xiaoxin .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06) :842-872
[35]   GLOBAL EXISTENCE RESULTS FOR THE ANISOTROPIC BOUSSINESQ SYSTEM IN DIMENSION TWO [J].
Danchin, Raphael ;
Paicu, Marius .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (03) :421-457
[36]   Global existence and uniqueness for a nonlinear Boussinesq system in dimension two [J].
Sulaiman, Samira .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
[37]   On the Global Existence for the Compressible Euler-Riesz System [J].
Danchin, R. ;
Ducomet, B. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
[38]   Analyticity and Existence of the Keller-Segel-Navier-Stokes Equations in Critical Besov Spaces [J].
Yang, Minghua ;
Fu, Zunwei ;
Liu, Suying .
ADVANCED NONLINEAR STUDIES, 2018, 18 (03) :517-535
[39]   GLOBAL EXISTENCE AND OPTIMAL TIME DECAY FOR THE BAER-NUNZIATO MODEL IN THE Lp CRITICAL BESOV SPACE [J].
Zhu, Limin ;
Cao, Hongmei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (10) :4228-4268
[40]   GLOBAL WELL-POSEDNESS AND DECAY ESTIMATE FOR THE 2-D BOUSSINESQ SYSTEM IN CRITICAL SPACES [J].
Niu, Dongjuan ;
Wang, Lu .
METHODS AND APPLICATIONS OF ANALYSIS, 2023, 30 (04)