On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces

被引:8
作者
Sulaiman, Samira [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
axisymmetric flows; critical Besov spaces; global well-posedness; WELL-POSEDNESS;
D O I
10.3233/ASY-2011-1074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the global existence and uniqueness results for the three-dimensional Boussinesq system with axisymmetric initial data upsilon(0) is an element of B-2,1(5/2)(R-3) and rho(0) is an element of B-2,1(1/2)(R-3) boolean AND L-p(R-3) with p > 6. This system couples the incompressible Euler equations with a transport-diffusion equation governing the density. In this case the Beale-Kato-Majda criterion (see [2]) is not known to be valid and to circumvent this difficulty we use in a crucial way some geometric properties of the vorticity.
引用
收藏
页码:89 / 121
页数:33
相关论文
共 50 条
[21]   Global Solutions to 3D Rotating Boussinesq Equations in Besov Spaces [J].
Sun, Jinyi ;
Liu, Chunlan ;
Yang, Minghua .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) :589-603
[22]   GLOBAL EXISTENCE AND GEVREY REGULARITY TO THE NAVIER-STOKES-NERNST-PLANCK-POISSON SYSTEM IN CRITICAL BESOV-MORREY SPACES [J].
Sun, Jinyi ;
Fu, Zunwei ;
Yin, Yue ;
Yang, Minghua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06) :3409-3425
[23]   A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces [J].
Zhang, Shunhang .
JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) :1531-1561
[24]   Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces [J].
Chengchun Hao .
Zeitschrift für angewandte Mathematik und Physik, 2012, 63 :825-834
[25]   Local well-posedness for the incompressible Euler equations in the critical Besov spaces [J].
Zhou, Y .
ANNALES DE L INSTITUT FOURIER, 2004, 54 (03) :773-+
[26]   Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces [J].
Hao, Chengchun .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05) :825-834
[27]   Ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces [J].
Xiao, Weiliang ;
Fei, Xiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
[28]   Compressible Navier-Stokes-Coriolis system in critical Besov spaces [J].
Fujii, Mikihiro ;
Watanabe, Keiichi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 428 :747-795
[29]   GEVREY REGULARITY AND EXISTENCE OF NAVIER-STOKES-NERNST-PLANCK-POISSON SYSTEM IN CRITICAL BESOV SPACES [J].
Yang, Minghua ;
Sun, Jinyi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (05) :1617-1639
[30]   Global well-posedness of the critical Burgers equation in critical Besov spaces [J].
Miao, Changxing ;
Wu, Gang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (06) :1673-1693