Improving the Personalized Recommendation in the Cold-start Scenarios

被引:1
作者
Gaspar, Peter [1 ]
Koncal, Matej [1 ]
Kompan, Michal [1 ]
Bielikova, Maria [1 ]
机构
[1] Slovak Univ Technol Bratislava, Ilkovicova 2, Bratislava, Slovakia
来源
2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019) | 2019年
关键词
personalized recommendation; cold-start; machine learning; collaborative filtering;
D O I
10.1109/DSAA.2019.00079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender systems generate items that should be interesting for the customers. However, recommenders usually fail in the cold-start scenario - when a new item or a new customer appears. In our work, we study the cold-start problem for a new customer. For a cold-start customer we find the most similar customers and use a "their" pre-trained collaborative filtering model to recommend. We compare several recommendation approaches and similarity metrics to analyze the accuracy and computational performance.
引用
收藏
页码:606 / 607
页数:2
相关论文
共 4 条
[1]  
[Anonymous], 2015, Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems co-located with 9th
[2]  
Cremonesi Paolo., 2009, RECSYS, P233
[3]  
Park S.-T., 2009, P 3 ACM C REC SYST A, P21, DOI DOI 10.1145/1639714.1639720
[4]   Cold-start News Recommendation with Domain-dependent Browse Graph [J].
Trevisiol, Michele ;
Aiello, Luca Maria ;
Schifanella, Rossano ;
Jaimes, Alejandro .
PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), 2014, :81-88