End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data

被引:42
作者
Derr, Alan [1 ]
Yang, Chaoxing [2 ]
Zilionis, Rapolas [3 ,4 ]
Sergushichev, Alexey [5 ,6 ]
Blodgett, David M. [7 ]
Redick, Sambra [2 ]
Bortell, Rita [2 ]
Luban, Jeremy [8 ]
Harlan, David M. [7 ]
Kadener, Sebastian [9 ]
Greiner, Dale L. [2 ,8 ]
Klein, Allon [3 ]
Artyomov, Maxim N. [6 ]
Garber, Manuel [1 ,8 ]
机构
[1] Univ Massachusetts, Sch Med, Program Bioinformat & Integrat Biol, Worcester, MA 01655 USA
[2] Univ Massachusetts, Sch Med, Diabet Ctr Excellence, Program Mol Med, Worcester, MA 01655 USA
[3] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA
[4] Vilnius Univ, Inst Biotechnol, LT-02241 Vilnius, Lithuania
[5] ITMO Univ, Comp Technol Dept, St Petersburg 197101, Russia
[6] Washington Univ, Dept Pathol & Immunol, St Louis, MO 63110 USA
[7] Univ Massachusetts, Sch Med, Diabet Ctr Excellence, Dept Med, Worcester, MA 01655 USA
[8] Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA 01655 USA
[9] Hebrew Univ Jerusalem, Dept Biol Chem, Silberman Inst Life Sci, IL-91904 Jerusalem, Israel
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; VIRUS-INFECTION; HIGH-THROUGHPUT; TYPE-2; POLYADENYLATION; QUANTIFICATION; PROLIFERATION; RESOLUTION; APOPTOSIS;
D O I
10.1101/gr.207902.116
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3'-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct beta-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing.
引用
收藏
页码:1397 / 1410
页数:14
相关论文
共 61 条
[1]   Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses [J].
Amit, Ido ;
Garber, Manuel ;
Chevrier, Nicolas ;
Leite, Ana Paula ;
Donner, Yoni ;
Eisenhaure, Thomas ;
Guttman, Mitchell ;
Grenier, Jennifer K. ;
Li, Weibo ;
Zuk, Or ;
Schubert, Lisa A. ;
Birditt, Brian ;
Shay, Tal ;
Goren, Alon ;
Zhang, Xiaolan ;
Smith, Zachary ;
Deering, Raquel ;
McDonald, Rebecca C. ;
Cabili, Moran ;
Bernstein, Bradley E. ;
Rinn, John L. ;
Meissner, Alex ;
Root, David E. ;
Hacohen, Nir ;
Regev, Aviv .
SCIENCE, 2009, 326 (5950) :257-263
[2]  
[Anonymous], 2004, RepeatMasker Open-3.0 [Internet]
[3]   Virus infection induces NF-κB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression [J].
Apostolou, Effie ;
Thanos, Dimitris .
CELL, 2008, 134 (01) :85-96
[4]   3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer [J].
Asmann, Yan W. ;
Klee, Eric W. ;
Thompson, E. Aubrey ;
Perez, Edith A. ;
Middha, Sumit ;
Oberg, Ann L. ;
Therneau, Terry M. ;
Smith, David I. ;
Poland, Gregory A. ;
Wieben, Eric D. ;
Kocher, Jean-Pierre A. .
BMC GENOMICS, 2009, 10 :531
[5]   Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles [J].
Bajikar, Sameer S. ;
Fuchs, Christiane ;
Roller, Andreas ;
Theis, Fabian J. ;
Janes, Kevin A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (05) :E626-E635
[6]   U1 snRNP Determines mRNA Length and Regulates Isoform Expression [J].
Berg, Michael G. ;
Singh, Larry N. ;
Younis, Ihab ;
Liu, Qiang ;
Pinto, Anna Maria ;
Kaida, Daisuke ;
Zhang, Zhenxi ;
Cho, Sungchan ;
Sherrill-Mix, Scott ;
Wan, Lili ;
Dreyfuss, Gideon .
CELL, 2012, 150 (01) :53-64
[7]   Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets [J].
Blodgett, David M. ;
Nowosielska, Anetta ;
Afik, Shaked ;
Pechhold, Susanne ;
Cura, Anthony J. ;
Kennedy, Norman J. ;
Kim, Soyoung ;
Kucukural, Alper ;
Davis, Roger J. ;
Kent, Sally C. ;
Greiner, Dale L. ;
Garber, Manuel G. ;
Harlan, David M. ;
diIorio, Philip .
DIABETES, 2015, 64 (09) :3172-3181
[8]  
Bortell Rita, 2012, Methods Mol Biol, V933, P31, DOI 10.1007/978-1-62703-068-7_3
[9]   Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments [J].
Bullard, James H. ;
Purdom, Elizabeth ;
Hansen, Kasper D. ;
Dudoit, Sandrine .
BMC BIOINFORMATICS, 2010, 11
[10]   Genome-wide analysis of mammalian promoter architecture and evolution [J].
Carninci, Piero ;
Sandelin, Albin ;
Lenhard, Boris ;
Katayama, Shintaro ;
Shimokawa, Kazuro ;
Ponjavic, Jasmina ;
Semple, Colin A. M. ;
Taylor, Martin S. ;
Engström, Par G. ;
Frith, Martin C. ;
Forrest, Alistair R. R. ;
Alkema, Wynand B. ;
Tan, Sin Lam ;
Plessy, Charles ;
Kodzius, Rimantas ;
Ravasi, Timothy ;
Kasukawa, Takeya ;
Fukuda, Shiro ;
Kanamori-Katayama, Mutsumi ;
Kitazume, Yayoi ;
Kawaji, Hideya ;
Kai, Chikatoshi ;
Nakamura, Mari ;
Konno, Hideaki ;
Nakano, Kenji ;
Mottagui-Tabar, Salim ;
Arner, Peter ;
Chesi, Alessandra ;
Gustincich, Stefano ;
Persichetti, Francesca ;
Suzuki, Harukazu ;
Grimmond, Sean M. ;
Wells, Christine A. ;
Orlando, Valerio ;
Wahlestedt, Claes ;
Liu, Edison T. ;
Harbers, Matthias ;
Kawai, Jun ;
Bajic, Vladimir B. ;
Hume, David A. ;
Hayashizaki, Yoshihide .
NATURE GENETICS, 2006, 38 (06) :626-635