THE BRAUER GROUP OF MODULI SPACES OF VECTOR BUNDLES OVER A REAL CURVE

被引:4
作者
Biswas, Indranil [1 ]
Hoffmann, Norbert [2 ]
Hogadi, Amit [1 ]
Schmitt, Alexander H. W. [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
关键词
Brauer group; moduli space; real algebraic curve; PICARD GROUP; LINE BUNDLES;
D O I
10.1090/S0002-9939-2011-10837-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a geometrically connected smooth projective curve of genus g(X) >= 2 over R. Let M(r, xi) be the coarse moduli space of geometrically stable vector bundles E over X of rank r and determinant xi, where xi is a real point of the Picard variety Pic(d)(X). If g(X) = r = 2, then let d be odd. We compute the Brauer group of M(r, xi).
引用
收藏
页码:4173 / 4179
页数:7
相关论文
共 20 条
[1]   Brauer obstruction for a universal vector bundle [J].
Balaji, Vikraman ;
Biswas, Indranil ;
Gabber, Ofer ;
Nagaraj, Donihakkalu S. .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (05) :265-268
[2]   The Picard group of the moduli of G-bundles on a curve [J].
Beauville, A ;
Laszlo, Y ;
Sorger, C .
COMPOSITIO MATHEMATICA, 1998, 112 (02) :183-216
[3]   CONFORMAL BLOCKS AND GENERALIZED THETA-FUNCTIONS [J].
BEAUVILLE, A ;
LASZLO, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (02) :385-419
[4]   Stable real algebraic vector bundles over a Klein bottle [J].
Bhosle, Usha N. ;
Biswas, Indranil .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) :4569-4595
[5]  
Biswas I, 2010, DOC MATH, V15, P35
[6]   The moduli space of stable vector bundles over a real algebraic curve [J].
Biswas, Indranil ;
Huisman, Johannes ;
Hurtubise, Jacques .
MATHEMATISCHE ANNALEN, 2010, 347 (01) :201-233
[7]  
de Jong A.J., A result of Gabber
[8]   THE PICARD GROUP OF VARIETIES OF MODULI OF SEMI-STABLE VECTOR-BUNDLES ON ALGEBRAIC-CURVES [J].
DREZET, JM ;
NARASIMHAN, MS .
INVENTIONES MATHEMATICAE, 1989, 97 (01) :53-94
[9]   Algebraic loop groups and moduli spaces of bundles [J].
Faltings, G .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2003, 5 (01) :41-68
[10]  
Grothendieck A., 1968, 10 EXPOSES COHOMOLOG, V3, P67