A Comprehensive Infrastructure for Big Data in Cancer Research: Accelerating Cancer Research and Precision Medicine

被引:59
|
作者
Hinkson, Izumi V. [1 ,2 ]
Davidsen, Tanja M. [1 ]
Klemm, Juli D. [1 ]
Chandramouliswaran, Ishwar [3 ]
Kerlavage, Anthony R. [1 ]
Kibbe, Warren A. [1 ,4 ]
机构
[1] NCI, Ctr Biomed Informat & Informat Technol, Rockville, MD 20850 USA
[2] Amer Assoc Advancement Sci, Sci & Technol Policy Fellowship Program, Washington, DC USA
[3] NIAID, Off Genom & Adv Technol, 9000 Rockville Pike, Bethesda, MD 20892 USA
[4] Duke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC USA
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2017年 / 5卷
基金
美国国家卫生研究院;
关键词
genomics; proteomics; imaging; big data; cancer; precision medicine; cloud infrastructure; PROTEOGENOMIC CHARACTERIZATION; GENOMIC CHARACTERIZATION;
D O I
10.3389/fcell.2017.00083
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Advancements in next-generation sequencing and other -omics technologies are accelerating the detailed molecular characterization of individual patient tumors, and driving the evolution of precision medicine. Cancer is no longer considered a single disease, but rather, a diverse array of diseases wherein each patient has a unique collection of germline variants and somatic mutations. Molecular profiling of patient-derived samples has led to a data explosion that could help us understand the contributions of environment and germline to risk, therapeutic response, and outcome. To maximize the value of these data, an interdisciplinary approach is paramount. The National Cancer Institute (NCI) has initiated multiple projects to characterize tumor samples using multi-omic approaches. These projects harness the expertise of clinicians, biologists, computer scientists, and software engineers to investigate cancer biology and therapeutic response in multidisciplinary teams. Petabytes of cancer genomic, transcriptomic, epigenomic, proteomic, and imaging data have been generated by these projects. To address the data analysis challenges associated with these large datasets, the NCI has sponsored the development of the Genomic Data Commons (GDC) and three Cloud Resources. The GDC ensures data and metadata quality, ingests and harmonizes genomic data, and securely redistributes the data. During its pilot phase, the Cloud Resources tested multiple cloud-based approaches for enhancing data access, collaboration, computational scalability, resource democratization, and reproducibility. These NCI-led efforts are continuously being refined to better support open data practices and precision oncology, and to serve as building blocks of the NCI Cancer Research Data Commons.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Accelerating research for lung cancer: Getting the data out there
    Dunn, Nathan
    Guan, Tracey
    Negrello, Theresa
    Cossio, Danica
    Francois, Gary
    Lehman, Margot
    Philpot, Shoni
    Sanmugarajah, Jasotha
    Windsor, Morgan
    RESPIROLOGY, 2023, 28 : 8 - 8
  • [32] Accelerating research for lung cancer: Getting the data out there
    Philpot, S.
    Dunn, N.
    Guan, T.
    Negrello, T.
    Cossio, D.
    Francois, G.
    Lehman, M.
    Sanmugarajah, J.
    Windsor, M.
    Marshall, H.
    RESPIROLOGY, 2023, 28 : 49 - 49
  • [34] Big Data in Cancer Research: Real-World Resources for Precision Oncology to Improve Cancer Care Delivery
    Tsai, Chiaojung Jillian
    Riaz, Nadeem
    Gomez, Scarlett Lin
    SEMINARS IN RADIATION ONCOLOGY, 2019, 29 (04) : 306 - 310
  • [35] Clinical Molecular Marker Testing Data Capture to Promote Precision Medicine Research Within the Cancer Research Network
    Burnett-Hartman, Andrea N.
    Udaltsova, Natalia
    Kushi, Lawrence H.
    Neslund-Dudas, Christine
    Rahm, Alanna Kulchak
    Pawloski, Pamala A.
    Corley, Douglas A.
    Knerr, Sarah
    Feigelson, Heather Spencer
    Hunter, Jessica Ezzell
    Tabano, David C.
    Epstein, Mara M.
    Honda, Stacey A.
    Ter-Minassian, Monica
    Lynch, Julie A.
    Lu, Christine Y.
    JCO CLINICAL CANCER INFORMATICS, 2019, 3 : 1 - 10
  • [36] Accelerating precision medicine through genetic and genomic big data analysis
    Cai, Yudong
    Huang, Tao
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2018, 1864 (06): : 2215 - 2217
  • [37] Big data for supporting precision medicine in lung cancer patients.
    Torrente, Maria
    Mensalvas, Ernestina
    Franco, Fernando
    Rodriguez-Gonzalez, Alejandro
    Calvo, Virginia
    Brenes, Maria Auxiliadora
    Paliouras, George
    Provencio-Pulla, Mariano
    JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (15)
  • [38] The Dutch childhood cancer genome project: Data-driven precision medicine and research
    von Berg, Joanna
    van Belzen, Ianthe A. E. M.
    Wallis, Fleur S. A.
    Spinou, Anastasia
    Farag, Roula
    Cruz, Victoria M.
    Kester, Lennart A.
    Koudijs, Marco
    Baker-Hernandez, John L.
    Janse, Alex
    Badloe, Shashi
    de Vos, Sam
    Santoso, Marcel
    Verwiel, Eugene T. P.
    van Tuil, Mark
    Kerstens, Hindrik H. D.
    Hehir-Kwa, Jayne Y.
    Holstege, Frank C. P.
    Tops, Bastiaan B. J.
    Kemmeren, Patrick
    CANCER RESEARCH, 2024, 84 (17)
  • [39] Returning raw genomic data to research participants in a pediatric cancer precision medicine trial
    Barlow-Stewart, Kristine
    Courtney, Eliza
    Cowley, Mark
    Ebzery, Camron
    Fuentes Bolanos, Noemi
    Gifford, Andrew J.
    Harden, Hazel
    Josephi-Taylor, Sarah
    Kotecha, Rishi S.
    Mateos, Marion K.
    Manzur, Mitali
    Mayoh, Chelsea
    Milnes, Dianne
    Nielsen, Jane
    O'Connor, Matthew
    Padhye, Bhavna
    Pitman, Catherine
    Pitman, Elizabeth
    Pinese, Mark
    Speechly, Catherine
    Sullivan, Ashleigh
    Trahair, Toby
    Tucker, Katherine
    Tyrrell, Vanessa
    Warby, Meera
    Wood, Andrew
    Ziegler, David S.
    Johnston, Carolyn
    NPJ GENOMIC MEDICINE, 2025, 10 (01)
  • [40] The Project Data Sphere Initiative: Accelerating Cancer Research by Sharing Data
    Green, Angela K.
    Reeder-Hayes, Katherine E.
    Corty, Robert W.
    Basch, Ethan
    Milowsky, Amathew I.
    Dusetzina, Stacie B.
    Bennett, Antonia V.
    Wood, Dwilliam A.
    ONCOLOGIST, 2015, 20 (05): : 464 - U24