Raman Signature of Graphene Superlattices

被引:241
作者
Carozo, Victor [1 ,3 ]
Almeida, Clara M. [3 ]
Ferreira, Erlon H. M. [3 ]
Cancado, Luiz Gustavo [2 ]
Achete, Carlos Alberto [1 ,3 ]
Jorio, Ado [2 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Met & Mat Engn, BR-21941972 Rio De Janeiro, Brazil
[2] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[3] Inst Nacl Metrol Normalizacao & Qualidade Ind INM, Div Mat Metrol, BR-25250020 Duque De Caxias, RJ, Brazil
关键词
Graphene; superlattice; Raman spectroscopy; double-resonance Raman; lattice resolution AFM; Moire pattern; SPECTROSCOPY; SCATTERING; GRAPHITE; DISORDER; DEFECTS;
D O I
10.1021/nl201370m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
When two identical two-dimensional periodic structures are superposed, a mismatch rotation angle between the structures generates a supetiattice. This effect is commonly observed in graphite, where the rotation between graphene layers generates Moire patterns in scanning tunneling microscopy images. Here, a study of intravalley and intervalley double-resonance Raman processes mediated by static potentials in rotationally stacked bilayer graphene is presented. The peak properties depend on the mismatch rotation angle and can be used as an optical signature for superlattices in bilayer graphene. An atomic force microscopy system is used to produce and identify specific rotationally stacked bilayer graphenes that demonstrate the validity of our model.
引用
收藏
页码:4527 / 4534
页数:8
相关论文
共 29 条
[1]  
Almeida C. M., 2011, J APPL PHYS IN PRESS
[2]   Low Temperature Raman Study of the Electron Coherence Length near Graphene Edges [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Novotny, Lukas .
NANO LETTERS, 2011, 11 (03) :1177-1181
[3]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[4]   Influence of the atomic structure on the Raman spectra of graphite edges -: art. no. 247401 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Dantas, MSS ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (24)
[5]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Superstructures in arrays of rotated graphene layers: Electronic structure calculations [J].
Cisternas, Eduardo ;
Flores, Marcos ;
Vargas, Patricio .
PHYSICAL REVIEW B, 2008, 78 (12)
[8]   Localization of Dirac Electrons in Rotated Graphene Bilayers [J].
de laissardiere, G. Trambly ;
Mayou, D. ;
Magaud, L. .
NANO LETTERS, 2010, 10 (03) :804-808
[9]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)