AN hp-DISCONTINUOUS GALERKIN METHOD FOR THE OPTIMAL CONTROL PROBLEM OF LASER SURFACE HARDENING OF STEEL

被引:2
作者
Nupur, Gupta [1 ]
Neela, Nataraj [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2011年 / 45卷 / 06期
关键词
Laser surface hardening of steel; semi-linear parabolic equation; optimal control; error estimates; discontinuous Galerkin finite element method; FINITE-ELEMENT METHODS; PARABOLIC PROBLEMS; PHASE-TRANSITIONS; MODEL;
D O I
10.1051/m2an/2011013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin method. A priori error estimates are developed at different discretization levels. Numerical experiments presented justify the theoretical order of convergence obtained.
引用
收藏
页码:1081 / 1113
页数:33
相关论文
共 38 条
[1]  
[Anonymous], FRONTIERS MATH
[2]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[3]   Convergence results for a nonlinear parabolic control problem [J].
Arnautu, V ;
Hömberg, D ;
Sokolowski, J .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1999, 20 (9-10) :805-824
[4]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[5]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[6]   FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I .
MATHEMATICS OF COMPUTATION, 1973, 27 (122) :221-228
[7]  
BERNARDI C, 2003, R03038 LAB J LOUIS L
[8]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[9]  
CROUZEIX M, 1989, MATH COMPUT, V53, P25, DOI 10.1090/S0025-5718-1989-0970700-7
[10]  
Douglas J., 1976, LECT NOTES PHYS, V58