A semi-smooth Newton method for control constrained boundary optimal control of the Navier-Stokes equations

被引:51
作者
de los Reyes, JC
Kunisch, K [1 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[2] EPN Quito, Dept Math, Quito, Ecuador
关键词
optimal boundary control with control constraints; Navier-Stokes equations; semi-smooth Newton methods;
D O I
10.1016/j.na.2005.04.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study optimal control of the Navier-Stokes equations when the control acts as a pointwise constrained boundary condition of Dirichlet type. The problem is analyzed in the control space H-00(1/2) the optimality system and second order sufficient optimality conditions are derived. For the numerical solution we apply a semi-smooth Newton method to a regularized version of the original problem and show convergence properties of the method and of the regularized solutions towards the original one. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1289 / 1316
页数:28
相关论文
共 34 条
  • [1] Abergel F., 1990, THEOR COMP FLUID DYN, V1, P303, DOI [DOI 10.1007/BF00271794, 10.1007/bf00271794]
  • [2] [Anonymous], 2000, MATH ANAL NUMERICAL
  • [3] Primal-dual strategy for constrained optimal control problems
    Bergounioux, M
    Ito, K
    Kunisch, K
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) : 1176 - 1194
  • [4] Bonnans F, 2000, PERTURBATION ANAL OP
  • [5] Constantin P., 1988, Chicago Lectures in Mathematics, DOI DOI 10.7208/CHICAGO/9780226764320.001.0001
  • [6] Dautray R., 2000, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I
  • [7] A comparison of algorithms for control constrained optimal control of the Burgers equation
    de los Reyes, JC
    Kunisch, K
    [J]. CALCOLO, 2004, 41 (04) : 203 - 225
  • [8] DELOSREYES JC, 2003, THESIS U GRAZ
  • [9] OPTIMAL CONTROLS OF NAVIER-STOKES EQUATIONS
    DESAI, M
    ITO, K
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (05) : 1428 - 1446
  • [10] Fattorini, 1999, INFINITE DIMENSIONAL, V62