Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device

被引:132
作者
Khoo, Bee Luan [1 ]
Grenci, Gianluca [2 ,3 ]
Lim, Ying Bena [3 ]
Lee, Soo Chin [4 ,5 ]
Han, Jongyoon [1 ,6 ,7 ]
Lim, Chwee Teck [1 ,2 ,3 ,8 ]
机构
[1] Singapore MIT Alliance Res & Technol SMART Ctr, BioSyst & Micromech BioSyM IRG, Singapore, Singapore
[2] Natl Univ Singapore, Mechanobiol Inst, Singapore, Singapore
[3] Natl Univ Singapore, Dept Biomed Engn, Singapore, Singapore
[4] Natl Univ Singapore Hosp, Natl Univ Canc Inst, Dept Hematol Oncol, Singapore, Singapore
[5] Natl Univ Singapore, Canc Sci Inst Singapore, Singapore, Singapore
[6] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[7] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[8] Natl Univ Singapore, Dept Mech Engn, Singapore, Singapore
基金
新加坡国家研究基金会; 英国医学研究理事会;
关键词
METASTATIC BREAST-CANCER; EX-VIVO CULTURE; STEM-CELLS; PROGRESSION-FREE; BLOOD; RESISTANCE; COCULTURE; SURVIVAL; IDENTIFICATION; ESTABLISHMENT;
D O I
10.1038/nprot.2017.125
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The development of personalized cancer therapy depends on a robust system to monitor the patient's individual response to anticancer treatment. Anticancer drug efficacy has been tested on circulating tumor cells (CTCs) derived from patient blood samples after ex vivo expansion into CTC clusters. Current attempts to culture these primary cancer cells focus on long-term maintenance under growth factor supplements into cell lines, which usually takes >6 months and results in a CTC expansion efficiency of <20%. We recently developed a simple but unique microfluidics-based culture approach that requires minimal preprocessing (similar to 30 min) and does not require prior enrichment of CTCs or depend on the use of growth factor supplements. The approach capitalizes on co-culture of immune cells from the same patient blood sample within specially designed microwells that promote CTC cluster formation within 2 weeks, with an overall cluster formation success rate of similar to 50%. Drug screening is facilitated by the incorporation of a gradient generator for parallel exposure to two or more drugs at various concentrations. Owing to the cost-effectiveness and less-invasive nature of this procedure, routine monitoring of disease progression can be achieved. The described microfluidics system can be operated with a single syringe pump to introduce drug compounds (which takes similar to 6 min), followed by incubation of the CTC clusters for 48 h before analysis. In addition to its applications in biomedical research, the rapid readout of our platform will enable clinicians to assess or predict a patient's response to various therapeutic strategies, so as to enable personalized or precision therapy.
引用
收藏
页码:34 / 58
页数:25
相关论文
共 87 条
  • [1] Toward engineered processes for sequencing-based analysis of single circulating tumor cells
    Adalsteinsson, Viktor A.
    Love, J. Christopher
    [J]. CURRENT OPINION IN CHEMICAL ENGINEERING, 2014, 4 : 97 - 104
  • [2] Prospective identification of tumorigenic breast cancer cells
    Al-Hajj, M
    Wicha, MS
    Benito-Hernandez, A
    Morrison, SJ
    Clarke, MF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) : 3983 - 3988
  • [3] Combinatorial drug therapy for cancer in the post-genomic era
    Al-Lazikani, Bissan
    Banerji, Udai
    Workman, Paul
    [J]. NATURE BIOTECHNOLOGY, 2012, 30 (07) : 679 - 691
  • [4] Circulating Tumor Cell Analysis: Technical and Statistical Considerations for Application to the Clinic
    Allan, Alison L.
    Keeney, Andmichael
    [J]. JOURNAL OF ONCOLOGY, 2010, 2010
  • [5] [Anonymous], J CLIN ONCOL S
  • [6] [Anonymous], BASIC MICROFLUIDIC S
  • [7] Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay
    Baccelli, Irene
    Schneeweiss, Andreas
    Riethdorf, Sabine
    Stenzinger, Albrecht
    Schillert, Anja
    Vogel, Vanessa
    Klein, Corinna
    Saini, Massimo
    Baeuerle, Tobias
    Wallwiener, Markus
    Holland-Letz, Tim
    Hoefner, Thomas
    Sprick, Martin
    Scharpff, Martina
    Marme, Frederik
    Sinn, Hans Peter
    Pantel, Klaus
    Weichert, Wilko
    Trumpp, Andreas
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (06) : 539 - U143
  • [8] BERDEL WE, 1989, BLOOD, V73, P80
  • [9] Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. establishment of objective criteria for the evaluation of immunostained cells
    Borgen, E
    Naume, B
    Nesland, JM
    Kvalheim, G
    Beiske, K
    Fodstad, O
    Diel, I
    Solomayer, EF
    Theocharous, P
    Coombes, RC
    Smith, BM
    Wunder, E
    Marolleau, JP
    Garcia, J
    Pantel, K
    [J]. CYTOTHERAPY, 1999, 1 (05) : 377 - 388
  • [10] BUTLER TP, 1975, CANCER RES, V35, P512