Caputo Type Fractional Differential Equations with Nonlocal Riemann-Liouville and Erdelyi-Kober Type Integral Boundary Conditions

被引:7
|
作者
Ahmad, Bashir [1 ]
Ntouyas, Sotiris K. [1 ,2 ]
Tariboon, Jessada [3 ]
Alsaedi, Ahmed [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
关键词
Caputo fractional derivative; Riemann-Liouville fractional integral; Erdelyi-Kober fractional integral; existence; fixed point; INCLUSIONS; EXISTENCE;
D O I
10.2298/FIL1714515A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study nonlocal boundary value problems of nonlinear Caputo fractional differential equations supplemented with different combinations of Riemann-Liouville and Erdelyi-Kober type fractional integral boundary conditions. By applying a variety of tools of fixed point theory, the desired existence and uniqueness results are obtained. Examples illustrating the main results are also constructed.
引用
收藏
页码:4515 / 4529
页数:15
相关论文
共 50 条
  • [1] NONLINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL ERDELYI-KOBER FRACTIONAL INTEGRAL CONDITIONS
    Thongsalee, Natthaphong
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 480 - 497
  • [2] Caputo type fractional differential equations with nonlocal Riemann-Liouville integral boundary conditions
    Ahmad B.
    Ntouyas S.K.
    Assolami A.
    Journal of Applied Mathematics and Computing, 2013, 41 (1-2) : 339 - 350
  • [3] Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdelyi-Kober integral boundary conditions on the half-line
    Thiramanus, Phollakrit
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    BOUNDARY VALUE PROBLEMS, 2015,
  • [4] Riemann-Liouville and Caputo type multiple Erdelyi-Kober operators
    Kiryakova, Virginia
    Luchko, Yuri
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1314 - 1336
  • [5] Existence results for fractional order differential equation with nonlocal Erdelyi-Kober and generalized Riemann-Liouville type integral boundary conditions at resonance
    Sun, Qiao
    Meng, Shuman
    Cui, Yujun
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [6] A Study of Fractional Differential Equations and Inclusions with Nonlocal Erdelyi-Kober Type Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Zhou, Yong
    Alsaedi, Ahmed
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (05) : 1315 - 1328
  • [7] A Study of Nonlinear Fractional-Order Boundary Value Problem with Nonlocal Erdelyi-Kober and Generalized Riemann-Liouville Type Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Alsaedi, Ahmed
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (02) : 121 - 139
  • [8] ANALYSIS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL ERDELYI-KOBER TYPE INTEGRAL BOUNDARY CONDITIONS
    Duraisamy, Palanisamy
    Gopal, Thangaraj Nandha
    Subramanian, Muthaiah
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (05) : 1401 - 1415
  • [9] Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann-Liouville and Erdelyi-Kober Q-Fractional Integral Conditions
    Zada, Akbar
    Alam, Mehboob
    Khalid, Khansa Hina
    Iqbal, Ramsha
    Popa, Ioan-Lucian
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [10] Mixed Erdelyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions
    Samadi, Ayub
    Kamthorncharoen, Chaiyod
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AIMS MATHEMATICS, 2024, 9 (11): : 32904 - 32920