GLOBAL WEIGHTED ESTIMATES FOR NONLINEAR ELLIPTIC OBSTACLE PROBLEMS OVER REIFENBERG DOMAINS

被引:9
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Palagachev, Dian K. [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Politecn Bari, DMMM, I-70125 Bari, Italy
关键词
Nonlinear elliptic equation; Obstacle problem; Irregular obstacle; Calderon-Zygmund estimate; Muckenhoupt weight; p-Laplacean; BMO; Reifenberg flat domain; Morrey space; FREE-BOUNDARY REGULARITY; PARABOLIC EQUATIONS; FLAT;
D O I
10.1090/S0002-9939-2015-12458-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the obstacle problem for an elliptic equation with discontinuous nonlinearity over a nonsmooth domain, assuming that the irregular obstacle and the nonhomogeneous term belong to suitable weighted Sobolev and Lebesgue spaces, respectively, with weights taken in the Muckenhoupt classes. We establish a Calderon-Zygmund type result by proving that the gradient of the weak solution to the nonlinear obstacle problem has the same weighted integrability as both the gradient of the obstacle and the nonhomogeneous term, provided that the nonlinearity has a small BMO-semi norm with respect to the gradient, and the boundary of the domain is delta-Reifenberg flat. We also get global regularity in the settings of the Morrey and Holder spaces for the weak solutions to the problem considered.
引用
收藏
页码:2527 / 2541
页数:15
相关论文
共 31 条
[1]   Degenerate problems with irregular obstacles [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 :107-160
[2]   Higher integrability in parabolic obstacle problems [J].
Boegelein, Verena ;
Scheven, Christoph .
FORUM MATHEMATICUM, 2012, 24 (05) :931-972
[3]   Parabolic equations in time dependent Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe .
ADVANCES IN MATHEMATICS, 2007, 212 (02) :797-818
[4]   Boundedness of the Weak Solutions to Quasilinear Elliptic Equations with Morrey Data [J].
Byun, Sun-Sig ;
Palagachev, Dian K. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (05) :1565-1585
[5]   Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains [J].
Byun, Sun-Sig ;
Palagachev, Dian K. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :37-76
[6]   Weighted W1,p estimates for solutions of non-linear parabolic equations over non-smooth domains [J].
Byun, Sun-Sig ;
Palagachev, Dian K. ;
Ryu, Seungjin .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 :765-778
[7]   Calderon-Zygmund theory for nonlinear elliptic problems with irregular obstacles [J].
Byun, Sun-Sig ;
Cho, Yumi ;
Wang, Lihe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (10) :3117-3143
[8]   Nonlinear gradient estimates for elliptic equations of general type [J].
Byun, Sun-Sig ;
Wang, Lihe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 45 (3-4) :403-419
[9]   The obstacle problem revisited [J].
Caffarelli, LA .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) :383-402
[10]  
Campanato S, 1963, RIC MAT, V12, P67