Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties

被引:451
作者
Cervantes-Sodi, F. [1 ]
Csanyi, G. [1 ]
Piscanec, S. [1 ]
Ferrari, A. C. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 OFA, England
关键词
D O I
10.1103/PhysRevB.77.165427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene nanoribbons are the counterpart of carbon nanotubes in graphene-based nanoelectronics. We investigate the electronic properties of chemically modified ribbons by means of density functional theory. We observe that chemical modifications of zigzag ribbons can break the spin degeneracy. This promotes the onset of a semiconducting-metal transition, or of a half-semiconducting state, with the two spin channels having a different band gap, or of a spin-polarized half-semiconducting state, where the spins in the valence and conduction bands are oppositely polarized. Edge functionalization of armchair ribbons gives electronic states a few eV away from the Fermi level and does not significantly affect their band gap. N and B produce different effects, depending on the position of the substitutional site. In particular, edge substitutions at low density do not significantly alter the band gap, while bulk substitution promotes the onset of semiconducting-metal transitions. Pyridinelike defects induce a semiconducting-metal transition.
引用
收藏
页数:13
相关论文
共 122 条
[91]   STRUCTURE OF GRAPHITIC CARBON ON NI(111) - A SURFACE EXTENDED-ENERGY-LOSS FINE-STRUCTURE STUDY [J].
ROSEI, R ;
DECRESCENZI, M ;
SETTE, F ;
QUARESIMA, C ;
SAVOIA, A ;
PERFETTI, P .
PHYSICAL REVIEW B, 1983, 28 (02) :1161-1164
[92]   Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons [J].
Rudberg, Elias ;
Salek, Pawel ;
Luo, Yi .
NANO LETTERS, 2007, 7 (08) :2211-2213
[93]   ELECTRONIC-STRUCTURE OF CHIRAL GRAPHENE TUBULES [J].
SAITO, R ;
FUJITA, M ;
DRESSELHAUS, G ;
DRESSELHAUS, MS .
APPLIED PHYSICS LETTERS, 1992, 60 (18) :2204-2206
[94]  
Saito R. A. D., 1998, PHYS PROPERTIES CARB
[95]   Stabilization mechanism of edge states in graphene [J].
Sasaki, K ;
Murakami, S ;
Saito, R .
APPLIED PHYSICS LETTERS, 2006, 88 (11)
[96]   Carbon nanotube-polymer composites for photonic devices [J].
Scardaci, V. ;
Rozhin, A. G. ;
Hennrich, F. ;
Milne, W. I. ;
Ferrari, A. C. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 37 (1-2) :115-118
[97]   Detection of individual gas molecules adsorbed on graphene [J].
Schedin, F. ;
Geim, A. K. ;
Morozov, S. V. ;
Hill, E. W. ;
Blake, P. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (09) :652-655
[98]   Coulomb blockade in graphene nanoribbons [J].
Sols, F. ;
Guinea, F. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[99]   Energy gaps in graphene nanoribbons [J].
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2006, 97 (21)
[100]   Half-metallic graphene nanoribbons [J].
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
NATURE, 2006, 444 (7117) :347-349