Combined solar concentration and carbon nanotube absorber for high performance solar thermoelectric generators

被引:49
作者
Li, Long [1 ]
Gao, Xiang [2 ]
Zhang, Guang [1 ]
Xie, Wenyuan [1 ]
Wang, Fufu [3 ]
Yao, Wei [1 ]
机构
[1] China Acad Space Technol, Qian Xuesen Lab Space Technol, 104 Youyi Rd, Beijing 100094, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, 9 Dengzhuang South Rd, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermoelectricity; Solar concentration; Carbon nanotube; Thermodynamics; Energy harvesting; POWER; HEAT; OPTIMIZATION; DESIGN; SYSTEM; COOLER;
D O I
10.1016/j.enconman.2018.12.104
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar thermoelectric generators (STEGs) is one of the most important technologies for solar energy conversion. However, the inefficiency due to coupling constraints such like low working temperature and dimensionless figure of merit of the thermoelectric materials, also known as material's ZT value, has been hampering the development of STEGs for a time. Here we demonstrate a high performance STEG system combined with solar concentrators and carbon nanotubes (CNTs) absorber, which can greatly improve the solar-thermal conversion process. The proposed STEG system enables a peak efficiency of 4.3% with solar concentration of 78, and a maximum power of 11.2 W at 106 x suns. The enhanced efficiency is ensured by the optimized system thermodynamics due to the combination of solar concentration devices and CNT based solar absorber. Our design provides a universal prototype of solar thermal energy recovery system for distributed energy harvesting and deep-space explorations.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 45 条
  • [1] Selective absorption of Carbon Nanotube thin films for solar energy applications
    Abendroth, Thomas
    Althues, Holger
    Maeder, Gerrit
    Haertel, Paul
    Kaskel, Stefan
    Beyer, Eckhard
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 143 : 553 - 556
  • [2] Solar Thermoelectric Generator for Micropower Applications
    Amatya, R.
    Ram, R. J.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (09) : 1735 - 1740
  • [3] Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids
    Bandopadhyay, Aditya
    Chakraborty, Suman
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (04)
  • [4] Concentrated solar thermoelectric generators
    Baranowski, Lauryn L.
    Snyder, G. Jeffrey
    Toberer, Eric S.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) : 9055 - 9067
  • [5] The menthol receptor TRPM8 is the principal detector of environmental cold
    Bautista, Diana M.
    Siemens, Jan
    Glazer, Joshua M.
    Tsuruda, Pamela R.
    Basbaum, Allan I.
    Stucky, Cheryl L.
    Jordt, Sven-Eric
    Julius, David
    [J]. NATURE, 2007, 448 (7150) : 204 - 208
  • [6] Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
    Bell, Lon E.
    [J]. SCIENCE, 2008, 321 (5895) : 1457 - 1461
  • [7] High-performance bulk thermoelectrics with all-scale hierarchical architectures
    Biswas, Kanishka
    He, Jiaqing
    Blum, Ivan D.
    Wu, Chun-I
    Hogan, Timothy P.
    Seidman, David N.
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    [J]. NATURE, 2012, 489 (7416) : 414 - 418
  • [8] Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows
    Borno, Ruba T.
    Steinmeyer, Joseph D.
    Maharbiz, Michel M.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (01)
  • [9] Silicon nanowires as efficient thermoelectric materials
    Boukai, Akram I.
    Bunimovich, Yuri
    Tahir-Kheli, Jamil
    Yu, Jen-Kan
    Goddard, William A., III
    Heath, James R.
    [J]. NATURE, 2008, 451 (7175) : 168 - 171
  • [10] Thermoelectric cooler application in electronic cooling
    Chein, R
    Huang, GM
    [J]. APPLIED THERMAL ENGINEERING, 2004, 24 (14-15) : 2207 - 2217