An Efficient Algorithm for Sparse Quantum State Preparation

被引:41
作者
Gleinig, Niels [1 ]
Hoefler, Torsten [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
来源
2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC) | 2021年
基金
欧洲研究理事会;
关键词
Quantum Computing; Quantum Compilation; State Preparation; Circuit Synthesis;
D O I
10.1109/DAC18074.2021.9586240
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Generating quantum circuits that prepare specific states is an essential part of quantum compilation. Algorithms that solve this problem for general states generate circuits that grow exponentially in the number of qubits. However, in contrast to general states, many practically relevant states are sparse in the standard basis. In this paper we show how sparsity can be used for efficient state preparation. We present a polynomial-time algorithm that generates polynomial-size quantum circuits (linear in the number of nonzero coefficients times number of qubits) that prepare given states, making computer-aided design of sparse state preparation scalable.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 22 条
[1]  
Aaronson S., 2004, P 36 ANN ACM S THEOR, P118, DOI [10.1145/1007352.1007378, DOI 10.1145/1007352.1007378]
[2]  
Aharonov D., 2003, P 35 ANN ACM S THEOR, P20, DOI DOI 10.1145/780542.780546
[3]  
Araujo I. F., 2020, DIVIDE CONQUER ALGOR
[4]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[5]   How to build the thermofield double state [J].
Cottrell, William ;
Freivogel, Ben ;
Hofman, Diego M. ;
Lokhande, Sagar F. .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
[6]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[7]  
Gidney Craig, 2015, Constructing Large Controlled Nots
[8]  
Gleinig N., 2019, 56 DESIGN AUTOMATION, P1
[9]   Quantum Algorithm for Linear Systems of Equations [J].
Harrow, Aram W. ;
Hassidim, Avinatan ;
Lloyd, Seth .
PHYSICAL REVIEW LETTERS, 2009, 103 (15)
[10]  
Kaye Phillip, 2001, arXiv:quant-ph/0407102 quant-ph, pPB28