THz-Frequency Signal Sources Based on Antiferromagnetic Spin Hall Oscillators

被引:0
|
作者
Sulymenko, O. R. [1 ]
Prokopenko, O., V [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Fac Radio Phys Elect & Comp Syst, Kiev, Ukraine
来源
PROCEEDINGS OF THE 2018 IEEE 8TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP-2018) | 2018年
关键词
signal source; THz-frequency signal; antiferromagnet; spin Hall oscillator; DRIVEN; MAGNETORESISTANCE; EMISSION;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
It was recently shown that an antiferromagnetic (AFM) spin Hall oscillators (SHOs) consisting a thin AFM layer covered by a current-driven thin metal layer having a strong spin-orbital coupling can be used as a micro- and nano-scale sources of 0.1 - 3 THz-frequency electromagnetic signals. However the problem of ac signal power extraction from an AFM SHO is not solved yet, which greatly limits applications of such signal sources. In this paper we theoretically analyze and compare performance of AFM-based THz-frequency signal sources, where ac signal power is extracted via the direct magnetic dipole emission and THz-frequency variations of the tunneling anisotropic magnetoresistance (TAMR) in AFM tunnel junction. Our calculations show that the mechanism of magnetic dipole emission could provide rather high output ac power (similar to 1-10 mu W) in the frequency range 0.5 - 1 THz, while the second method utilizing the TAMR is more convenient for experimental realization at micro- and nano-scale.
引用
收藏
页数:4
相关论文
共 37 条
  • [1] Electrodynamic Model of THz-Frequency Signal Source Based on Antiferromagnetic Spin Hall Auto-oscillator
    Sulymenko, Olga
    Prokopenko, Oleksandr
    2018 IEEE 17TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY (MMET), 2018, : 322 - 325
  • [2] Generation of THz-Frequency Electromagnetic Signals in Antiferromagnetic Nano-Oscillators
    Sulymenko, O. R.
    Prokopenko, O. V.
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2018, : 60 - 63
  • [3] Generation of THz-Frequency Electromagnetic Signals in Antiferromagnetic Multilayered Nanostructures Biased by a Spin Current
    Sulymenko, O. R.
    Prokopenko, O. V.
    2017 IEEE INTERNATIONAL YOUNG SCIENTISTS FORUM ON APPLIED PHYSICS AND ENGINEERING (YSF), 2017, : 279 - 282
  • [4] Terahertz-Frequency Signal Source Based on an Array of Antiferromagnetic Spin Hall Oscillators
    Shtanko, Oleh
    Prokopenko, Oleksandr
    PROCEEDINGS OF THE 2020 IEEE 10TH INTERNATIONAL CONFERENCE ON NANOMATERIALS: APPLICATIONS & PROPERTIES (NAP-2020), 2020,
  • [5] Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current
    Khymyn, Roman
    Lisenkov, Ivan
    Tiberkevich, Vasyl
    Ivanov, Boris A.
    Slavin, Andrei
    SCIENTIFIC REPORTS, 2017, 7
  • [6] Logic Circuits Based on Neuron-Like Antiferromagnetic Spin Hall Oscillators
    Sulymenko, O. R.
    Prokopenko, O. V.
    2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 132 - 137
  • [7] Spin Hall Oscillators Based on Antiferromagnets for Logic Operations
    Sulymenko, O. R.
    Prokopenko, O., V
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON NANOMATERIALS: APPLICATIONS & PROPERTIES (NAP-2019), PTS 1-2, 2019,
  • [8] Terahertz-Frequency Signal Source Based on an Antiferromagnetic Tunnel Junction
    Sulymenko, Olga R.
    Prokopenko, Oleksandr, V
    Tyberkevych, Vasyl S.
    Slavin, Andrei N.
    IEEE MAGNETICS LETTERS, 2018, 9
  • [9] CoFeB-Based Spin Hall Nano-Oscillators
    Ranjbar, M.
    Durrenfeld, P.
    Haidar, M.
    Iacocca, E.
    Balinskiy, M.
    Le, T. Q.
    Fazlali, M.
    Houshang, A.
    Awad, A. A.
    Dumas, R. K.
    Akerman, J.
    IEEE MAGNETICS LETTERS, 2014, 5
  • [10] Temperature tunable oscillator of THz-frequency signals based on the orthoferrite/heavy metal heterostructure
    Meshcheryakov, A. A.
    Safin, A. R.
    Kalyabin, D., V
    Nikitov, S. A.
    Mednikov, A. M.
    Frolov, D. A.
    Kirilyuk, A., I
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (19)