Electrothermal Dynamics of Semiconductor Nanowires under Local Carrier Modulation

被引:50
作者
Fu, Deyi [1 ,2 ]
Zou, Jijun [1 ]
Wang, Kevin [1 ,3 ]
Zhang, Rong [2 ]
Yu, Dong [4 ]
Wu, Junqiao [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Nanjing Natl Lab Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
关键词
Semiconductor nanowires; electrothermal dynamics; scanning photocurrent microscopy; local carrier modulation; CARBON NANOTUBE TRANSISTORS; FIELD-EFFECT TRANSISTORS; SILICON SOLAR-CELLS; TRANSPORT; DEVICES; MICROSCOPY; BARRIERS; PROBE;
D O I
10.1021/nl2018806
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Charge transfer, surface/interface, defect states, and internal fields strongly influence carrier statics and dynamics in semiconductor nanowires. These effects are usually probed using spatially resolved scanning current techniques, where charge carriers are driven to move by diffusion force due to a density gradient, drift force due to internal fields, and thermoelectric force due to a temperature gradient. However, in the analysis of experimental data, analytical formulas are usually used which are based on the assumption that a single component of these forces dominates the carrier dynamics. In this work we show that this simplification is generally not justified even in the simplest configurations, and the scanning microscopy data need to be analyzed with caution. We performed a comprehensive numerical modeling of the electrothermal dynamics of free charge carriers in the scanning photocurrent microscopy configuration. The simulation allows us to reveal and predict important, surprising effects that are previously not recognized, and assess the limitation as well as potential of these scanning current techniques in nanowire characterization.
引用
收藏
页码:3809 / 3815
页数:7
相关论文
共 34 条
[1]   Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors [J].
Ahn, Y ;
Dunning, J ;
Park, J .
NANO LETTERS, 2005, 5 (07) :1367-1370
[2]   Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors [J].
Ahn, Y. H. ;
Tsen, A. W. ;
Kim, Bio ;
Park, Yung Woo ;
Park, Jiwoong .
NANO LETTERS, 2007, 7 (11) :3320-3323
[3]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[4]   Nonuniform Nanowire Doping Profiles Revealed by Quantitative Scanning Photocurrent Microscopy [J].
Allen, Jonathan E. ;
Perea, Daniel E. ;
Hemesath, Eric R. ;
Lauhon, Lincoln J. .
ADVANCED MATERIALS, 2009, 21 (30) :3067-+
[5]   Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Lauhon, Lincoln J. .
NANO LETTERS, 2009, 9 (05) :1903-1908
[6]   Scanned probe microscopy of electronic transport in carbon nanotubes [J].
Bachtold, A ;
Fuhrer, MS ;
Plyasunov, S ;
Forero, M ;
Anderson, EH ;
Zettl, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2000, 84 (26) :6082-6085
[7]   Photocurrent imaging of charge transport barriers in carbon nanotube devices [J].
Balasubramanian, K ;
Burghard, M ;
Kern, K ;
Scolari, M ;
Mews, A .
NANO LETTERS, 2005, 5 (03) :507-510
[8]   Photoelectronic transport imaging of individual semiconducting carbon nanotubes [J].
Balasubramanian, K ;
Fan, YW ;
Burghard, M ;
Kern, K ;
Friedrich, M ;
Wannek, U ;
Mews, A .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2400-2402
[9]   Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current [J].
Brown, Gregory ;
Faifer, Vladimir ;
Pudov, Alex ;
Anikeev, Sergey ;
Bykov, Eugene ;
Contreras, Miguel ;
Wu, Junqiao .
APPLIED PHYSICS LETTERS, 2010, 96 (02)
[10]   Effective Seebeck coefficient for semiconductors [J].
Cai, Jianwei ;
Mahan, G. D. .
PHYSICAL REVIEW B, 2006, 74 (07)