Noise-resilient and high-speed deep learning with coherent silicon photonics

被引:78
作者
Mourgias-Alexandris, G. [1 ,2 ]
Moralis-Pegios, M. [1 ,2 ]
Tsakyridis, A. [1 ,2 ]
Simos, S. [1 ,2 ]
Dabos, G. [1 ,2 ]
Totovic, A. [1 ,2 ]
Passalis, N. [1 ]
Kirtas, M. [1 ]
Rutirawut, T. [3 ]
Gardes, F. Y. [3 ]
Tefas, A. [1 ]
Pleros, N. [1 ,2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
[2] Aristotle Univ Thessaloniki, Ctr Interdisciplinary Res & Innovat, Thessaloniki, Greece
[3] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
关键词
NEURON;
D O I
10.1038/s41467-022-33259-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The challenge of high-speed and high-accuracy coherent photonic neurons for deep learning applications lies to solve noise related issues. Here, Mourgias-Alexandris et al. address this problem by introducing a noise-resilient hardware architectural and a deep learning training platform. The explosive growth of deep learning applications has triggered a new era in computing hardware, targeting the efficient deployment of multiply-and-accumulate operations. In this realm, integrated photonics have come to the foreground as a promising energy efficient deep learning technology platform for enabling ultra-high compute rates. However, despite integrated photonic neural network layouts have already penetrated successfully the deep learning era, their compute rate and noise-related characteristics are still far beyond their promise for high-speed photonic engines. Herein, we demonstrate experimentally a noise-resilient deep learning coherent photonic neural network layout that operates at 10GMAC/sec/axon compute rates and follows a noise-resilient training model. The coherent photonic neural network has been fabricated as a silicon photonic chip and its MNIST classification performance was experimentally evaluated to support accuracy values of >99% and >98% at 5 and 10GMAC/sec/axon, respectively, offering 6x higher on-chip compute rates and >7% accuracy improvement over state-of-the-art coherent implementations.
引用
收藏
页数:7
相关论文
共 38 条
[1]   ITO-based electro-absorption modulator for photonic neural activation function [J].
Amin, R. ;
George, J. K. ;
Sun, S. ;
de Lima, T. Ferreira ;
Tait, A. N. ;
Khurgin, J. B. ;
Miscuglio, M. ;
Shastri, B. J. ;
Prucnal, P. R. ;
El-Ghazawi, T. ;
Sorger, V. J. .
APL MATERIALS, 2019, 7 (08)
[2]   Optimal design for universal multiport interferometers [J].
Clements, William R. ;
Humphreys, Peter C. ;
Metcalf, Benjamin J. ;
Kolthammer, W. Steven ;
Walmsley, Ian A. .
OPTICA, 2016, 3 (12) :1460-1465
[3]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[4]  
Gu JQ, 2020, DES AUT TEST EUROPE, P1586, DOI 10.23919/DATE48585.2020.9116521
[5]   Programmable Silicon Photonic Optical Thresholder [J].
Huang, Chaoran ;
de Lima, Thomas Ferreira ;
Jha, Aashu ;
Abbaslou, Siamak ;
Tait, Alexander N. ;
Shastri, Bhavin J. ;
Prucnal, Paul R. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (22) :1834-1837
[6]   The building blocks of a brain-inspired computer [J].
Kendall, Jack D. ;
Kumar, Suhas .
APPLIED PHYSICS REVIEWS, 2020, 7 (01)
[7]  
Klachko M, 2019, Arxiv, DOI arXiv:1904.01705
[8]   Photonic neuromorphic information processing and reservoir computing [J].
Lugnan, A. ;
Katumba, A. ;
Laporte, F. ;
Freiberger, M. ;
Sackesyn, S. ;
Ma, C. ;
Gooskens, E. ;
Dambre, J. ;
Bienstman, P. .
APL PHOTONICS, 2020, 5 (02)
[9]   Photonic tensor cores for machine learning [J].
Miscuglio, Mario ;
Sorger, Volker J. .
APPLIED PHYSICS REVIEWS, 2020, 7 (03)
[10]   Neuromorphic Silicon Photonics and Hardware-Aware Deep Learning for High-Speed Inference [J].
Moralis-Pegios, Miltiadis ;
Mourgias-Alexandris, George ;
Tsakyridis, Apostolos ;
Giamougiannis, George ;
Totovic, Angelina ;
Dabos, George ;
Passalis, Nikolaos ;
Kirtas, Manos ;
Rutirawut, T. ;
Gardes, F. Y. ;
Tefas, Anastasios ;
Pleros, Nikos .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (10) :3243-3254