Monte Carlo study of coherent scattering effects of low-energy charged particle transport in Percus-Yevick liquids

被引:23
作者
Tattersall, W. J. [1 ,2 ]
Cocks, D. G. [2 ]
Boyle, G. J. [2 ]
Buckman, S. J. [1 ,3 ]
White, R. D. [2 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[2] James Cook Univ, Coll Sci Technol & Engn, Townsville, Qld 4810, Australia
[3] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 04期
关键词
ELECTRON-TRANSPORT; HARD SPHERES; SIMULATION; WATER; EQUATION; SOLIDS; ARGON; CODES;
D O I
10.1103/PhysRevE.91.043304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We generalize a simpleMonte Carlo (MC) model for dilute gases to consider the transport behavior of positrons and electrons in Percus-Yevick model liquids under highly nonequilibrium conditions, accounting rigorously for coherent scattering processes. The procedure extends an existing technique [Wojcik and Tachiya, Chem. Phys. Lett. 363, 381 (2002)], using the static structure factor to account for the altered anisotropy of coherent scattering in structured material. We identify the effects of the approximation used in the original method, and we develop a modified method that does not require that approximation. We also present an enhanced MC technique that has been designed to improve the accuracy and flexibility of simulations in spatially varying electric fields. All of the results are found to be in excellent agreement with an independent multiterm Boltzmann equation solution, providing benchmarks for future transport models in liquids and structured systems.
引用
收藏
页数:11
相关论文
共 33 条
[1]   On the approximation of transport properties in structured materials using momentum-transfer theory [J].
Boyle, G. J. ;
White, R. D. ;
Robson, R. E. ;
Dujko, S. ;
Petrovic, Z. Lj .
NEW JOURNAL OF PHYSICS, 2012, 14
[2]  
BRENNAN MJ, 1990, AUST J PHYS, V43, P27
[3]   OPTIMIZATION OF MONTE-CARLO CODES USING NULL COLLISION TECHNIQUES FOR EXPERIMENTAL SIMULATION AT LOW E/N [J].
BRENNAN, MJ .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1991, 19 (02) :256-261
[4]   Unified description and validation of Monte Carlo simulators in PET [J].
Buvat, I ;
Castiglioni, I ;
Feuardent, J ;
Gilardi, MC .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (02) :329-346
[5]  
Carlson D., 1985, AMORPHOUS SEMICONDUC, V2nd, P113
[6]   Positron follow-up in liquid water: I. A new Monte Carlo track-structure code [J].
Champion, C ;
Le Loirec, C .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (07) :1707-1723
[7]   EPOTRAN: A full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water [J].
Champion, Christophe ;
Le Loirec, Cindy ;
Stosic, Borko .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2012, 88 (1-2) :54-61
[8]   THEORY OF HOT ELECTRONS IN GASES LIQUIDS AND SOLIDS [J].
COHEN, MH ;
LEKNER, J .
PHYSICAL REVIEW, 1967, 158 (02) :305-&
[9]   Monte Carlo studies of non-conservative electron transport in the steady-state Townsend experiment [J].
Dujko, S. ;
White, R. D. ;
Petrovic, Z. Lj .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (24)
[10]   Monte Carlo simulation of the energy loss of low-energy electrons in liquid water [J].
Emfietzoglou, D ;
Karava, K ;
Papamichael, G ;
Moscovitch, M .
PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (15) :2355-2371