Facile preparation of superhydrophobic/superoleophilic diatomite porous ceramics for efficient oil-water separation

被引:1
作者
Li, Xiaojian [1 ]
Wu, Wenhao [1 ]
Han, Lei [1 ]
Li, Zhi [1 ]
Wang, Honghong [1 ]
Dong, Longhao [1 ]
Jia, Quanli [2 ]
Huang, Zhong [1 ]
Zhang, Haijun [1 ]
Zhang, Shaowei [3 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Zhengzhou Univ, Henan Key Lab High Temp Funct Ceram, Zhengzhou 450052, Peoples R China
[3] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
基金
中国国家自然科学基金;
关键词
Key-words; Superhydrophobic; Superoleophilic; Porous ceramic; Oil-water separation; OIL/WATER SEPARATION; FOAM; WETTABILITY; FABRICATION; COLLECTION; AEROGELS;
D O I
10.2109/jcersj2.22091
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, a superhydrophobic diatomite porous ceramic was successfully prepared via a straightforward impregnation and heat-treatment way using isobutylene-maleic anhydride copolymer and SiO2 nanoparticles (NPs) as co-modifier. Due to the removal of the hydroxyl group after 1 h heating at 573 K in a 5 % H2/Ar atmosphere, the amide group in the original isobutylene-maleic anhydride copolymer was transformed to imide group, endowing the porous ceramics with excellent hydrophobic property. Furthermore, the addition of SiO2 NPs which enhanced the surface roughness resulted in the superhydrophobic properties of the final products. The continuous oil-water separation test of as-prepared superhydrophobic diatomite porous ceramics exhibited an initial separation flux of over 205.5 kg center dot min11 center dot m12 with a separation selectivity of over 93 % for various oil-water mixtures. Moreover, their oil-adsorption tests demonstrated an 1.6-57 times adsorption capacity as high as these of other traditional inorganic sorbent materials. (c) 2022 The Ceramic Society of Japan. All rights reserved.
引用
收藏
页码:867 / 874
页数:8
相关论文
共 50 条
  • [21] Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation
    Hu, Yue
    Zhu, Yanji
    Wang, Huaiyuan
    Wang, Chijia
    Li, Hongwei
    Zhang, Xiguang
    Yuan, Ruixia
    Zhao, Yiming
    CHEMICAL ENGINEERING JOURNAL, 2017, 322 : 157 - 166
  • [22] Preparation of magnetic superhydrophobic melamine sponge for oil-water separation
    Li, Zeng-Tian
    He, Fu-An
    Lin, Bo
    POWDER TECHNOLOGY, 2019, 345 : 571 - 579
  • [23] Superhydrophobic and superoleophilic nickel foam for oil/water separation
    Eum, Kyoung Yong
    Phiri, Isheunesu
    Kim, Jin Woo
    Choi, Won San
    Ko, Jang Myoun
    Jung, Heesoo
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 36 (08) : 1313 - 1320
  • [24] Engineering superhydrophobic-superoleophilic nylon mesh for high-efficiency oil-water separation
    Shi, Hong
    Wang, Tiantian
    Zhao, Long
    Zhu, Weihua
    DESALINATION AND WATER TREATMENT, 2020, 204 : 438 - 448
  • [25] Facile Fabrication of Superhydrophobic/Superoleophilic Cotton for Highly Efficient Oil/Water Separation
    Wang, Qing
    Yu, Mingguang
    Chen, Guangxue
    Chen, Qifeng
    Tai, Jinglei
    BIORESOURCES, 2017, 12 (01): : 643 - 654
  • [26] Facile preparation of superhydrophobic and superoleophilic porous polymer membranes for oil/water separation from a polyarylester polydimethylsiloxane block copolymer
    Li, Hui
    Zhao, Xiaoyun
    Wu, Pengfei
    Zhang, Shuxiang
    Geng, Bing
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (06) : 3211 - 3218
  • [27] Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review
    Rasouli, Seyedabbas
    Rezaei, Nima
    Hamedi, Hamideh
    Zendehboudi, Sohrab
    Duan, Xili
    MATERIALS & DESIGN, 2021, 204
  • [28] Facile fabrication of superhydrophobic/superoleophilic microporous membranes by spray-coating ytterbium oxide particles for efficient oil-water separation
    Matin, Asif
    Baig, Umair
    Gondal, M. A.
    Akhtar, Sultan
    Zubair, S. M.
    JOURNAL OF MEMBRANE SCIENCE, 2018, 548 : 390 - 397
  • [29] A Facile Route to Fabricate Superhydrophobic Cu2O Surface for Efficient Oil-Water Separation
    Lei, Sheng
    Fang, Xinzuo
    Wang, Fajun
    Xue, Mingshan
    Ou, Junfei
    Li, Changquan
    Li, Wen
    COATINGS, 2019, 9 (10)
  • [30] Facile fabrication of zinc oxide coated superhydrophobic and superoleophilic meshes for efficient oil/water separation
    Zhang, Yuezhong
    Wang, Xiaoyu
    Wang, Chunhui
    Liu, Jiangjiang
    Zhai, Hongbiao
    Liu, Baosheng
    Zhao, Xudong
    Fang, Daqing
    RSC ADVANCES, 2018, 8 (61) : 35150 - 35156