Theory of relaxation dynamics for anomalous diffusion processes in harmonic potential

被引:9
|
作者
Wang, Xudong [1 ]
Chen, Yao [1 ]
Deng, Weihua [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
NONERGODICITY; NOISE; WALKS; TIME;
D O I
10.1103/PhysRevE.101.042105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An important physical property for a stochastic process is how it responds to an external force or spatial confinement. This paper aims to study the relaxation dynamics of a generic process confined in a harmonic potential. We find the dependence of ensemble- and time-averaged mean squared displacements of the confined process on the velocity correlation function C(t, t + tau) of the original process without any external force. Combining two kinds of scaling forms of C(t, t + tau) for small tau and large tau, the stationary value and the relaxation behaviors can be immediately obtained. Our results are valid for a large amount of anomalous diffusion processes, including the ones with single-scaled velocity correlation function (such as fractional Brownian motion and scaled Brownian motion) and the multiscaled ones (like Levy walk with a broad range of power law exponents of flight time distribution). Note that the latter includes a special case with telegraphic active noise, which could take up athermal energy from the environment.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion
    E. K. Lenzi
    M. K. Lenzi
    R. S. Zola
    The European Physical Journal Plus, 134
  • [32] Microscopic dynamics underlying anomalous diffusion
    Kaniadakis, G
    Lapenta, G
    PHYSICAL REVIEW E, 2000, 62 (03): : 3246 - 3249
  • [33] Dynamics of stochastic relaxation processes
    Ejima, Toshiaki, 1600, (20):
  • [34] Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion
    Lenzi, E. K.
    Lenzi, M. K.
    Zola, R. S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10):
  • [35] AVALANCHE DYNAMICS FROM ANOMALOUS DIFFUSION
    BANTAY, P
    JANOSI, IM
    PHYSICAL REVIEW LETTERS, 1992, 68 (13) : 2058 - 2061
  • [36] THEORY OF INTRAMOLECULAR RELAXATION PROCESSES
    HOFACKER, GL
    JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (10): : S208 - +
  • [37] THEORY OF RELAXATION PROCESSES IN FERROMAGNETS
    BARYAKHT.VG
    KRASNOV, VP
    SOBOLEV, VL
    FIZIKA TVERDOGO TELA, 1974, 16 (02): : 414 - 418
  • [38] THEORY OF RELAXATION PROCESSES IN SUPERCONDUCTORS
    BARYAKHTAR, VG
    KLEPIKOV, VF
    SEMINOZH.VP
    FIZIKA TVERDOGO TELA, 1973, 15 (04): : 1213 - 1222
  • [39] THERMODYNAMIC THEORY OF RELAXATION PROCESSES
    SHERMERGOR, TD
    SOVIET PHYSICS-TECHNICAL PHYSICS, 1958, 3 (03): : 606 - 613
  • [40] COLLISION THEORY OF RELAXATION PROCESSES
    CHEN, FM
    SNIDER, RF
    JOURNAL OF CHEMICAL PHYSICS, 1967, 46 (10): : 3937 - &