Theory of relaxation dynamics for anomalous diffusion processes in harmonic potential

被引:9
|
作者
Wang, Xudong [1 ]
Chen, Yao [1 ]
Deng, Weihua [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
NONERGODICITY; NOISE; WALKS; TIME;
D O I
10.1103/PhysRevE.101.042105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An important physical property for a stochastic process is how it responds to an external force or spatial confinement. This paper aims to study the relaxation dynamics of a generic process confined in a harmonic potential. We find the dependence of ensemble- and time-averaged mean squared displacements of the confined process on the velocity correlation function C(t, t + tau) of the original process without any external force. Combining two kinds of scaling forms of C(t, t + tau) for small tau and large tau, the stationary value and the relaxation behaviors can be immediately obtained. Our results are valid for a large amount of anomalous diffusion processes, including the ones with single-scaled velocity correlation function (such as fractional Brownian motion and scaled Brownian motion) and the multiscaled ones (like Levy walk with a broad range of power law exponents of flight time distribution). Note that the latter includes a special case with telegraphic active noise, which could take up athermal energy from the environment.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Anomalous relaxation and diffusion processes in complex systems
    Baumann, G
    Südland, N
    Nonnenmacher, TF
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (1-2): : 157 - 171
  • [2] Anomalous diffusion in the dynamics of complex processes
    Timashev, S. F.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 3 (02) : 320 - 331
  • [3] Anomalous diffusion in the dynamics of complex processes
    S. F. Timashev
    Russian Journal of Physical Chemistry B, 2009, 3 : 320 - 331
  • [4] Theory of Anomalous Diffusion Dynamics in Biomacromolecular Media
    Wei Wenjie
    Chen Wenlong
    Dai Xiaobin
    Yan Li-Tang
    ACTA CHIMICA SINICA, 2023, 81 (08) : 967 - 978
  • [5] Asymptotic dynamics in scalar field theory: Anomalous relaxation
    Boyanovsky, D
    Destri, C
    de Vega, HJ
    Holman, R
    Salgado, J
    PHYSICAL REVIEW D, 1998, 57 (12) : 7388 - 7415
  • [6] Anomalous diffusion as a stochastic component in the dynamics of complex processes
    Timashev, Serge F.
    Polyakov, Yuriy S.
    Misurkin, Pavel I.
    Lakeev, Sergey G.
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [7] Anomalous diffusion and phase relaxation
    Talkner, P
    PHYSICAL REVIEW E, 2001, 64 (06): : 8
  • [8] THEORY OF ELASTICITY AND DYNAMICS OF RELAXATION PROCESSES IN SOFT SOLIDS
    PANYUKOV, SV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1993, 103 (05): : 1644 - 1661
  • [9] Relaxation processes in harmonic glasses?
    Ruocco, G
    Sette, F
    Di Leonardo, R
    Monaco, G
    Sampoli, M
    Scopigno, T
    Viliani, G
    PHYSICAL REVIEW LETTERS, 2000, 84 (25) : 5788 - 5791
  • [10] THEORY OF ANOMALOUS DIELECTRIC RELAXATION
    Coffey, W. T.
    NONLINEAR DIELECTRIC PHENOMENA IN COMPLEX LIQUIDS, 2005, 157 : 19 - 29