Superdense teleportation using hyperentangled photons

被引:124
作者
Graham, Trent M. [1 ]
Bernstein, Herbert J. [2 ,3 ]
Wei, Tzu-Chieh [4 ,5 ]
Junge, Marius [6 ]
Kwiat, Paul G. [1 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Hampshire Coll, Inst Sci & Interdisciplinary Studies, Amherst, MA 01002 USA
[3] Hampshire Coll, Sch Nat Sci, Amherst, MA 01002 USA
[4] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[5] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[6] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
DETERMINISTIC QUANTUM TELEPORTATION; STATE; ENTANGLEMENT;
D O I
10.1038/ncomms8185
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transmitting quantum information between two remote parties is a requirement for many quantum applications; however, direct transmission of states is often impossible because of noise and loss in the communication channel. Entanglement-enhanced state communication can be used to avoid this issue, but current techniques require extensive experimental resources to transmit large quantum states deterministically. To reduce these resource requirements, we use photon pairs hyperentangled in polarization and orbital angular momentum to implement superdense teleportation, which can communicate a specific class of single-photon ququarts. We achieve an average fidelity of 87.0(1)%, almost twice the classical limit of 44% with reduced experimental resources than traditional techniques. We conclude by discussing the information content of this constrained set of states and demonstrate that this set has an exponentially larger state space volume than the lower-dimensional general states with the same number of state parameters.
引用
收藏
页数:9
相关论文
共 53 条
[1]  
Allen L., 2003, Optical Angular Momentum
[2]  
[Anonymous], PHYS REV A
[3]  
[Anonymous], PREPRINT
[4]   Generation of hyperentangled photon pairs [J].
Barreiro, JT ;
Langford, NK ;
Peters, NA ;
Kwiat, PG .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[5]   Beating the channel capacity limit for linear photonic superdense coding [J].
Barreiro, Julio T. ;
Wei, Tzu-Chieh ;
Kwiat, Paul G. .
NATURE PHYSICS, 2008, 4 (04) :282-286
[6]   Remote Preparation of Single-Photon "Hybrid'' Entangled and Vector-Polarization States [J].
Barreiro, Julio T. ;
Wei, Tzu-Chieh ;
Kwiat, Paul G. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[7]   Deterministic quantum teleportation of atomic qubits [J].
Barrett, MD ;
Chiaverini, J ;
Schaetz, T ;
Britton, J ;
Itano, WM ;
Jost, JD ;
Knill, E ;
Langer, C ;
Leibfried, D ;
Ozeri, R ;
Wineland, DJ .
NATURE, 2004, 429 (6993) :737-739
[8]   Demonstration of Blind Quantum Computing [J].
Barz, Stefanie ;
Kashefi, Elham ;
Broadbent, Anne ;
Fitzsimons, Joseph F. ;
Zeilinger, Anton ;
Walther, Philip .
SCIENCE, 2012, 335 (6066) :303-308
[9]   Benchmarking a Quantum Teleportation Protocol in Superconducting Circuits Using Tomography and an Entanglement Witness [J].
Baur, M. ;
Fedorov, A. ;
Steffen, L. ;
Filipp, S. ;
da Silva, M. P. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2012, 108 (04)
[10]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899