3D printed molds for non-planar PDMS microfluidic channels

被引:145
|
作者
Hwang, Yongha [1 ]
Paydar, Omeed H. [2 ]
Candler, Robert N. [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Biomed Engn Interdept Program, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Three-dimensionally (3D) printing; Arbitrary microchannel geometry; Microfluidics; Polydimethylsiloxane (PDMS); POLYDIMETHYLSILOXANE; FABRICATION; SYSTEMS; VALVES;
D O I
10.1016/j.sna.2015.02.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article introduces the use of three-dimensionally (3D) printed molds for rapid fabrication of complex and arbitrary microchannel geometries that are unattainable through existing soft lithography techniques. The molds are printed directly from computer-aided design (CAD) files, making rapid prototyping of microfluidic devices possible in hours. The resulting 3D printed structures enable precise control of various device geometries, such as the profile of the channel cross-section and variable channel diameters in a single device. We report fabrication of complex 3D channels using these molds with polydimethylsiloxane (PDMS) polymer. Technology limits, including surface roughness, resolution, and replication fidelity are also characterized, demonstrating 100-mu m features and sub-micron replication fidelity in PDMS channels. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [41] A method to discretize non-planar fractures for 3D subsurface flow and transport simulations
    Graf, Thomas
    Therrien, Rene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (11) : 2069 - 2090
  • [42] Numerical Analysis of Zipper Fracturing Using a Non-Planar 3D Fracture Model
    Wang, Zhen
    Yang, Lifeng
    Gao, Rui
    Xu, Guanshui
    Liu, Zhe
    Mo, Shaoyuan
    Fan, Meng
    Wang, Xin
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [43] Analyses of 3D non-planar fatigue crack propagation with smoothed particle hydrodynamics
    Tazoe, Koki
    Yagawa, Genki
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2022, 45 (03) : 701 - 712
  • [44] Digital design and parametric study of 3D concrete printing on non-planar surfaces
    Li, Shuai
    Nguyen-Xuan, H.
    Tran, Phuong
    AUTOMATION IN CONSTRUCTION, 2023, 145
  • [45] Pre-Moisturized β-hemihydrate for 3D Printed Molds
    Selvaraj, Solaman B.
    Singamneni, Sarat
    MATERIALS AND MANUFACTURING PROCESSES, 2016, 31 (08) : 1102 - 1112
  • [46] Wireless Ventilation Measurement in 3D Printed Sand Molds
    Brian Vuksanovich
    Callan Herberger
    Dean Jaric
    Timothy Daugherty
    Mike Clancy
    Stephanie Gaffney
    Rich Lonardo
    Richard Huff
    Jason Walker
    Pedro Cortes
    Sairam Ravi
    Jerry Thiel
    Eric MacDonald
    International Journal of Metalcasting, 2022, 16 : 80 - 92
  • [47] Wireless Ventilation Measurement in 3D Printed Sand Molds
    Vuksanovich, Brian
    Herberger, Callan
    Daugherty, Timothy
    Walker, Jason
    Cortes, Pedro
    MacDonald, Eric
    Jaric, Dean
    Gaffney, Stephanie
    Lonardo, Rich
    Clancy, Mike
    Huff, Richard
    Ravi, Sairam
    Thiel, Jerry
    INTERNATIONAL JOURNAL OF METALCASTING, 2022, 16 (01) : 80 - 92
  • [48] Fabrication of PDMS microfluidic devices with 3D wax jetting
    Li Z.
    Yang J.
    Li K.
    Zhu L.
    Tang W.
    Li, Z., 1600, Royal Society of Chemistry (07): : 3313 - 3320
  • [49] From imaging to personalized 3D printed molds in cranioplasty
    Geroski, Tijana
    Kovacevic, Vojin
    Nikolic, Dalibor
    Filipovic, Nenad
    MEDICAL ENGINEERING & PHYSICS, 2024, 130
  • [50] Fabrication of PDMS microfluidic devices with 3D wax jetting
    Li, Zong'an
    Yang, Jiquan
    Li, Kelou
    Zhu, Li
    Tang, Wencheng
    RSC ADVANCES, 2017, 7 (06) : 3313 - 3320