3D printed molds for non-planar PDMS microfluidic channels

被引:145
|
作者
Hwang, Yongha [1 ]
Paydar, Omeed H. [2 ]
Candler, Robert N. [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Biomed Engn Interdept Program, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Three-dimensionally (3D) printing; Arbitrary microchannel geometry; Microfluidics; Polydimethylsiloxane (PDMS); POLYDIMETHYLSILOXANE; FABRICATION; SYSTEMS; VALVES;
D O I
10.1016/j.sna.2015.02.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article introduces the use of three-dimensionally (3D) printed molds for rapid fabrication of complex and arbitrary microchannel geometries that are unattainable through existing soft lithography techniques. The molds are printed directly from computer-aided design (CAD) files, making rapid prototyping of microfluidic devices possible in hours. The resulting 3D printed structures enable precise control of various device geometries, such as the profile of the channel cross-section and variable channel diameters in a single device. We report fabrication of complex 3D channels using these molds with polydimethylsiloxane (PDMS) polymer. Technology limits, including surface roughness, resolution, and replication fidelity are also characterized, demonstrating 100-mu m features and sub-micron replication fidelity in PDMS channels. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [21] Optimal Strategies for Filament Orientation in Non-Planar 3D Printing
    Atarihuana, Sebastian
    Fernández, Felipe
    Erazo, José
    Narváez, Mateo
    Hidalgo, Víctor
    Processes, 2024, 12 (12)
  • [22] Mesh improvement methodology for 3D volumes with non-planar surfaces
    Alan Kelly
    Lukasz Kaczmarczyk
    Chris J. Pearce
    Engineering with Computers, 2014, 30 : 201 - 210
  • [23] A Thermomechanical Analysis of Conformal Cooling Channels in 3D Printed Plastic Injection Molds
    Jahan, Suchana Akter
    El-Mounayri, Hazim
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [24] Simulating fully 3D non-planar evolution of hydraulic fractures
    Cherny, Sergey
    Lapin, Vasiliy
    Esipov, Denis
    Kuranakov, Dmitriy
    Avdyushenko, Alexander
    Lyutov, Alexey
    Karnakov, Petr
    INTERNATIONAL JOURNAL OF FRACTURE, 2016, 201 (02) : 181 - 211
  • [25] Automatic aligning and bonding system of PDMS layer for the fabrication of 3D microfluidic channels
    Kim, JY
    Baek, JY
    Lee, KA
    Lee, SH
    SENSORS AND ACTUATORS A-PHYSICAL, 2005, 119 (02) : 593 - 598
  • [26] 3D Printed Microfluidic Probes
    Ayoola Brimmo
    Pierre-Alexandre Goyette
    Roaa Alnemari
    Thomas Gervais
    Mohammad A. Qasaimeh
    Scientific Reports, 8
  • [27] 3D Printed Microfluidic Probes
    Brimmo, Ayoola
    Goyette, Pierre-Alexandre
    Alnemari, Roaa
    Gervais, Thomas
    Qasaimeh, Mohammad A.
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Improving Buildability of Overhangs of 3D Printed Objects through Non-Planar Slicing Informed by Force Flow Analysis
    Vele, Jiri
    Kurilla, Lukas
    Achten, Henri H.
    ECAADE 2023 DIGITAL DESIGN RECONSIDERED, VOL 1, 2023, : 519 - 526
  • [29] Mechanical characterization of 3D printed, non-planar lattice structures under quasi-static cyclic loading
    McCaw, John C. S.
    Cuan-Urquizo, Enrique
    RAPID PROTOTYPING JOURNAL, 2020, 26 (04) : 707 - 717
  • [30] Drop formation in non-planar microfluidic devices
    Rotem, Assaf
    Abate, Adam R.
    Utada, Andrew S.
    Van Steijn, Volkert
    Weitz, David A.
    LAB ON A CHIP, 2012, 12 (21) : 4263 - 4268