3D printed molds for non-planar PDMS microfluidic channels

被引:145
|
作者
Hwang, Yongha [1 ]
Paydar, Omeed H. [2 ]
Candler, Robert N. [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Biomed Engn Interdept Program, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Three-dimensionally (3D) printing; Arbitrary microchannel geometry; Microfluidics; Polydimethylsiloxane (PDMS); POLYDIMETHYLSILOXANE; FABRICATION; SYSTEMS; VALVES;
D O I
10.1016/j.sna.2015.02.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article introduces the use of three-dimensionally (3D) printed molds for rapid fabrication of complex and arbitrary microchannel geometries that are unattainable through existing soft lithography techniques. The molds are printed directly from computer-aided design (CAD) files, making rapid prototyping of microfluidic devices possible in hours. The resulting 3D printed structures enable precise control of various device geometries, such as the profile of the channel cross-section and variable channel diameters in a single device. We report fabrication of complex 3D channels using these molds with polydimethylsiloxane (PDMS) polymer. Technology limits, including surface roughness, resolution, and replication fidelity are also characterized, demonstrating 100-mu m features and sub-micron replication fidelity in PDMS channels. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [11] Non-planar reslicing for freehand 3D ultrasound
    Gee, A
    Prager, R
    Berman, L
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 716 - 725
  • [12] Development of a 3D-printed microfluidic device for biological applications using LEGO® PDMS molds
    Gething, Claire
    Fletcher, Heidi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [13] 3D printed metal molds for hot embossing plastic microfluidic devices
    Lin, Tung-Yi
    Do, Truong
    Kwon, Patrick
    Lillehoj, Peter B.
    LAB ON A CHIP, 2017, 17 (02) : 241 - 247
  • [14] Thin films for 3D: ALD for non-planar topographies
    Sundaram, Ganesh M.
    Deguns, Eric W.
    Bhatia, Ritwik
    Dalberth, Mark J.
    Sowa, Mark J.
    Becker, Jill S.
    SOLID STATE TECHNOLOGY, 2009, 52 (06) : 12 - +
  • [15] Protocol Development for PDMS Organ-on-Chip Fabrication Using 3D Printed Molds
    Lu, Alexander
    Xiao, Shuo
    Soe, Mi Thant Mon
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2025, 392 (03):
  • [16] Integrating 3D Printed Microfluidic Channels with Planar Resonator Sensors for Low Cost and Sensitive Liquid Detection
    Wiltshire, Benjamin D.
    Mohammadi, Sevda
    Zarifi, Mohammad H.
    2018 18TH INTERNATIONAL SYMPOSIUM ON ANTENNA TECHNOLOGY AND APPLIED ELECTROMAGNETICS (ANTEM 2018), 2018,
  • [17] 3D Printed Platform for Impedimetric Sensing of Liquids and Microfluidic Channels
    Sebechlebska, Tana
    Vaneckova, Eva
    Choinska-Mlynarczyk, Marta Katarzyna
    Navratil, Tomas
    Poltorak, Lukasz
    Bonini, Andrea
    Vivaldi, Federico
    Kolivoska, Viliam
    ANALYTICAL CHEMISTRY, 2022, 94 (41) : 14426 - 14433
  • [18] Mesh improvement methodology for 3D volumes with non-planar surfaces
    Kelly, Alan
    Kaczmarczyk, Lukasz
    Pearce, Chris J.
    ENGINEERING WITH COMPUTERS, 2014, 30 (02) : 201 - 210
  • [19] Simulating fully 3D non-planar evolution of hydraulic fractures
    Sergey Cherny
    Vasiliy Lapin
    Denis Esipov
    Dmitriy Kuranakov
    Alexander Avdyushenko
    Alexey Lyutov
    Petr Karnakov
    International Journal of Fracture, 2016, 201 : 181 - 211
  • [20] 3D candidate selection method for pedestrian detection on non-planar
    Fernandez, D.
    Parra, I.
    Sotelo, M. A.
    Revenga, P.
    Alvarez, S.
    Gavilan, M.
    2007 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, 2007, : 19 - 24