3D printed molds for non-planar PDMS microfluidic channels

被引:145
作者
Hwang, Yongha [1 ]
Paydar, Omeed H. [2 ]
Candler, Robert N. [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Biomed Engn Interdept Program, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Three-dimensionally (3D) printing; Arbitrary microchannel geometry; Microfluidics; Polydimethylsiloxane (PDMS); POLYDIMETHYLSILOXANE; FABRICATION; SYSTEMS; VALVES;
D O I
10.1016/j.sna.2015.02.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article introduces the use of three-dimensionally (3D) printed molds for rapid fabrication of complex and arbitrary microchannel geometries that are unattainable through existing soft lithography techniques. The molds are printed directly from computer-aided design (CAD) files, making rapid prototyping of microfluidic devices possible in hours. The resulting 3D printed structures enable precise control of various device geometries, such as the profile of the channel cross-section and variable channel diameters in a single device. We report fabrication of complex 3D channels using these molds with polydimethylsiloxane (PDMS) polymer. Technology limits, including surface roughness, resolution, and replication fidelity are also characterized, demonstrating 100-mu m features and sub-micron replication fidelity in PDMS channels. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [11] Inkjet 3D Printed Microfluidic Devices
    Adamski, Krzysztof
    Kubicki, Wojciech
    Walczak, Rafal
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (MIXDES 2016), 2016, : 504 - 506
  • [12] Capillary Flow in PDMS Cylindrical Microfluidic Channel Using 3-D Printed Mold
    Hwang, Yongha
    Seo, Dongmin
    Roy, Mohendra
    Han, Euijin
    Candler, Rob N.
    Seo, Sungkyu
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2016, 25 (02) : 238 - 240
  • [13] Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds
    Anyaduba, Tochukwu D.
    Otoo, Jonas A.
    Schlappi, Travis S.
    MICROMACHINES, 2022, 13 (11)
  • [14] Fabrication of PDMS microfluidic devices with 3D wax jetting
    Li, Zong'an
    Yang, Jiquan
    Li, Kelou
    Zhu, Li
    Tang, Wencheng
    RSC ADVANCES, 2017, 7 (06) : 3313 - 3320
  • [15] 3D Printed Microfluidics
    Nielsen, Anna V.
    Beauchamp, Michael J.
    Nordin, Gregory P.
    Woolley, Adam T.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 13, 2020, 13 : 45 - 65
  • [16] PDMS Curing Inhibition on 3D-Printed Molds: Why? Also, How to Avoid It?
    Venzac, Bastien
    Deng, Shanliang
    Mahmoud, Ziad
    Lenferink, Aufried
    Costa, Aurelie
    Bray, Fabrice
    Otto, Cees
    Rolando, Christian
    Le Gac, Severine
    ANALYTICAL CHEMISTRY, 2021, 93 (19) : 7180 - 7187
  • [17] A 3D printed flow sensor for microfluidic applications
    Hawke, Adam
    Concilia, Gianmarco
    Thurgood, Peter
    Ahnood, Arman
    Baratchi, Sara
    Khoshmanesh, Khashayar
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 362
  • [18] 3D printed microfluidic devices with integrated valves
    Rogers, Chad I.
    Qaderi, Kamran
    Woolley, Adam T.
    Nordin, Gregory P.
    BIOMICROFLUIDICS, 2015, 9 (01):
  • [19] 3D printed microfluidic devices: enablers and barriers
    Waheed, Sidra
    Cabot, Joan M.
    Macdonald, Niall P.
    Lewis, Trevor
    Guijt, Rosanne M.
    Paull, Brett
    Breadmore, Michael C.
    LAB ON A CHIP, 2016, 16 (11) : 1993 - 2013
  • [20] Microfabrication Bonding Process Optimization for a 3D Multi-Layer PDMS Suspended Microfluidics
    Marzban, Mostapha
    Moghadam, Ehsan Yazdanpanah
    Dargahi, Javad
    Packirisamy, Muthukumaran
    APPLIED SCIENCES-BASEL, 2022, 12 (09):