3D printed molds for non-planar PDMS microfluidic channels

被引:148
作者
Hwang, Yongha [1 ]
Paydar, Omeed H. [2 ]
Candler, Robert N. [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Biomed Engn Interdept Program, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Three-dimensionally (3D) printing; Arbitrary microchannel geometry; Microfluidics; Polydimethylsiloxane (PDMS); POLYDIMETHYLSILOXANE; FABRICATION; SYSTEMS; VALVES;
D O I
10.1016/j.sna.2015.02.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article introduces the use of three-dimensionally (3D) printed molds for rapid fabrication of complex and arbitrary microchannel geometries that are unattainable through existing soft lithography techniques. The molds are printed directly from computer-aided design (CAD) files, making rapid prototyping of microfluidic devices possible in hours. The resulting 3D printed structures enable precise control of various device geometries, such as the profile of the channel cross-section and variable channel diameters in a single device. We report fabrication of complex 3D channels using these molds with polydimethylsiloxane (PDMS) polymer. Technology limits, including surface roughness, resolution, and replication fidelity are also characterized, demonstrating 100-mu m features and sub-micron replication fidelity in PDMS channels. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 23 条
[1]   Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping [J].
Anderson, JR ;
Chiu, DT ;
Jackman, RJ ;
Cherniavskaya, O ;
McDonald, JC ;
Wu, HK ;
Whitesides, SH ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3158-3164
[2]   A High-Yield Process for 3-D Large-Scale Integrated Microfluidic Networks in PDMS [J].
Carlborg, Carl Fredrik ;
Haraldsson, Tommy ;
Cornaglia, Matteo ;
Stemme, Goran ;
van der Wijngaart, Wouter .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2010, 19 (05) :1050-1057
[3]   Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips [J].
Effenhauser, CS ;
Bruin, GJM ;
Paulus, A ;
Ehrat, M .
ANALYTICAL CHEMISTRY, 1997, 69 (17) :3451-3457
[4]   Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences [J].
Gross, Bethany C. ;
Erkal, Jayda L. ;
Lockwood, Sarah Y. ;
Chen, Chengpeng ;
Spence, Dana M. .
ANALYTICAL CHEMISTRY, 2014, 86 (07) :3240-3253
[5]   Sodium hydroxide treatment of PDMS based microfluidic devices [J].
Hoek, Ingrid ;
Tho, Febly ;
Arnold, W. Mike .
LAB ON A CHIP, 2010, 10 (17) :2283-2285
[6]   3D printed modules for integrated microfluidic devices [J].
Lee, Kyoung G. ;
Park, Kyun Joo ;
Seok, Seunghwan ;
Shin, Sujeong ;
Kim, Do Hyun ;
Park, Jung Youn ;
Heo, Yun Seok ;
Lee, Seok Jae ;
Lee, Tae Jae .
RSC ADVANCES, 2014, 4 (62) :32876-32880
[7]   3D Printed Bionic Ears [J].
Mannoor, Manu S. ;
Jiang, Ziwen ;
James, Teena ;
Kong, Yong Lin ;
Malatesta, Karen A. ;
Soboyejo, Winston O. ;
Verma, Naveen ;
Gracias, David H. ;
McAlpine, Michael C. .
NANO LETTERS, 2013, 13 (06) :2634-2639
[8]   Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems [J].
Mata, A ;
Fleischman, AJ ;
Roy, S .
BIOMEDICAL MICRODEVICES, 2005, 7 (04) :281-293
[9]   Poly(dimethylsiloxane) as a material for fabricating microfluidic devices [J].
McDonald, JC ;
Whitesides, GM .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (07) :491-499
[10]  
McDonald JC, 2000, ELECTROPHORESIS, V21, P27, DOI 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO