3D printed molds for non-planar PDMS microfluidic channels

被引:145
作者
Hwang, Yongha [1 ]
Paydar, Omeed H. [2 ]
Candler, Robert N. [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Biomed Engn Interdept Program, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Three-dimensionally (3D) printing; Arbitrary microchannel geometry; Microfluidics; Polydimethylsiloxane (PDMS); POLYDIMETHYLSILOXANE; FABRICATION; SYSTEMS; VALVES;
D O I
10.1016/j.sna.2015.02.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article introduces the use of three-dimensionally (3D) printed molds for rapid fabrication of complex and arbitrary microchannel geometries that are unattainable through existing soft lithography techniques. The molds are printed directly from computer-aided design (CAD) files, making rapid prototyping of microfluidic devices possible in hours. The resulting 3D printed structures enable precise control of various device geometries, such as the profile of the channel cross-section and variable channel diameters in a single device. We report fabrication of complex 3D channels using these molds with polydimethylsiloxane (PDMS) polymer. Technology limits, including surface roughness, resolution, and replication fidelity are also characterized, demonstrating 100-mu m features and sub-micron replication fidelity in PDMS channels. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [1] 3D printed metal molds for hot embossing plastic microfluidic devices
    Lin, Tung-Yi
    Do, Truong
    Kwon, Patrick
    Lillehoj, Peter B.
    LAB ON A CHIP, 2017, 17 (02) : 241 - 247
  • [2] Drop formation in non-planar microfluidic devices
    Rotem, Assaf
    Abate, Adam R.
    Utada, Andrew S.
    Van Steijn, Volkert
    Weitz, David A.
    LAB ON A CHIP, 2012, 12 (21) : 4263 - 4268
  • [3] A simple and low-cost fully 3D-printed non-planar emulsion generator
    Zhang, Jia Ming
    Li, Er Qiang
    Aguirre-Pablo, Andres A.
    Thoroddsen, Sigurdur T.
    RSC ADVANCES, 2016, 6 (04): : 2793 - 2799
  • [4] Automatic aligning and bonding system of PDMS layer for the fabrication of 3D microfluidic channels
    Kim, JY
    Baek, JY
    Lee, KA
    Lee, SH
    SENSORS AND ACTUATORS A-PHYSICAL, 2005, 119 (02) : 593 - 598
  • [5] Characterization and evaluation of 3D printed microfluidic chip for cell processing
    Lee, Jia Min
    Zhang, Meng
    Yeong, Wai Yee
    MICROFLUIDICS AND NANOFLUIDICS, 2016, 20 (01) : 1 - 15
  • [6] Fabrication of 3D Microfluidic Channels and In-Channel Features Using 3D Printed, Water-Soluble Sacrificial Mold
    Goh, Wei Huang
    Hashimoto, Michinao
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2018, 303 (03)
  • [7] Photogrammetric measurements of 3D printed microfluidic devices
    Guerra, M. G.
    Volpone, C.
    Galantucci, L. M.
    Percoco, G.
    ADDITIVE MANUFACTURING, 2018, 21 : 53 - 62
  • [8] Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips
    Chan, Ho Nam
    Chen, Yangfan
    Shu, Yiwei
    Chen, Yin
    Tian, Qian
    Wu, Hongkai
    MICROFLUIDICS AND NANOFLUIDICS, 2015, 19 (01) : 9 - 18
  • [9] PDMS-based microfluidic devices with shrinkable wax molds printed on biaxially orientated polystyrene film
    Zhang, Yajun
    Liu, Jingji
    Wang, Hongliang
    Fan, Yiqiang
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07):
  • [10] Aging behavior of fully 3D printed microfluidic devices
    Shvets, Petr
    Shapovalov, Viktor
    Azarov, Daniil
    Kolesnikov, Alexey
    Prokopovich, Pavel
    Popov, Alexander
    Chapek, Sergei
    Guda, Alexander
    Leshchinsky, Mark
    Soldatov, Alexander
    Goikhman, Alexander
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (1-2) : 569 - 578