Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells

被引:444
|
作者
Park, Minwoo [1 ,2 ]
Kim, Jae-Yup [1 ]
Son, Hae Jung [1 ]
Lee, Chul-Ho [3 ]
Jang, Seung Soon [4 ]
Ko, Min Jae [1 ,3 ]
机构
[1] Korea Inst Sci & Technol, Photoelect Hybrids Res Ctr, Seoul 02792, South Korea
[2] Sookmyung Womens Univ, Dept Chem & Biol Engn, Seoul 04310, South Korea
[3] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[4] Georgia Inst Technol, Computat NanoBio Technol Lab, Sch Mat Sci & Engn, 771 Ferst Dr NW, Atlanta, GA 30332 USA
基金
新加坡国家研究基金会;
关键词
Flexible solar cell; Perovskite solar cell; Low temperature and solution process; Tin oxide; TIN OXIDE; EFFICIENT; STABILITY;
D O I
10.1016/j.nanoen.2016.04.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lead halide perovskite solar cells (PSCs) are thought to be promising energy power suppliers because of their feasibility for high power conversion efficiency (PCE), light weight, and flexible architecture. The preparation of charge transporting layers at low temperature has been essential for high-performance and flexible PSCs. Recently, low-temperature-processed metal oxides have been a desirable material for charge transport and air stability for PSCs, instead of organic semiconductors. However, pristine metal oxides fabricated at low temperature have still precluded high performance of the device because of their low conductivity and large deviation in energy levels from the conduction band or valance band of the perovskite. Therefore, doping metals in the metal oxides has been considered as an effective method to endow suitable electrical properties. Herein, we developed a highly efficient electron transporting layer (ETL) comprising Li-doped SnO2 (Li:SnO2) prepared at low temperature in solution. The doped Li in SnO2 enhanced conductivity as well as induced a downward shift of the conduction band minimum of SnO2, which facilitated injection and transfer of electrons from the conduction band of the perovskite. The PCE was measured to be 18.2% and 14.78% for the rigid and flexible substrates, respectively. The high-performance and flexible PSCs could be potentially used as a wearable energy power source. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:208 / 215
页数:8
相关论文
共 50 条
  • [1] Solution-processed Cu-doped SnO2 as an effective electron transporting layer for High-Performance planar perovskite solar cells
    Zhou, Xiangqing
    Zhang, Wenfeng
    Wang, Xiaohong
    Lin, Puan
    Zhou, Shenghou
    Hu, Taotao
    Tian, Liuwen
    Wen, Fang
    Duan, Gongtao
    Yu, Lang
    Xiang, Yan
    Huang, Bensheng
    Huang, Yuelong
    APPLIED SURFACE SCIENCE, 2022, 584
  • [2] High-performance planar perovskite solar cells based on low-temperature solution-processed well-crystalline SnO2 nanorods electron-transporting layers
    Xu, Xiaoxia
    Xu, Zhe
    Tang, Jie
    Zhang, Xuezhen
    Zhang, Lei
    Wu, Jihuai
    Lan, Zhang
    CHEMICAL ENGINEERING JOURNAL, 2018, 351 : 391 - 398
  • [4] Low-temperature solution-processed SnO2 electron transport layer modified by oxygen plasma for planar perovskite solar cells
    Muthukrishnan, Akshaiya Padmalatha
    Lee, Junyeoung
    Kim, Jongbok
    Kim, Chang Su
    Jo, Sungjin
    RSC ADVANCES, 2022, 12 (08) : 4883 - 4890
  • [5] Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers
    Chen, Hao
    Liu, Detao
    Wang, Yafei
    Wang, Chenyun
    Zhang, Ting
    Zhang, Peng
    Sarvari, Hojjatollah
    Chen, Zhi
    Li, Shibin
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [6] Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers
    Hao Chen
    Detao Liu
    Yafei Wang
    Chenyun Wang
    Ting Zhang
    Peng Zhang
    Hojjatollah Sarvari
    Zhi Chen
    Shibin Li
    Nanoscale Research Letters, 2017, 12
  • [7] Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells
    Ke, Weijun
    Fang, Guojia
    Liu, Qin
    Xiong, Liangbin
    Qin, Pingli
    Tao, Hong
    Wang, Jing
    Lei, Hongwei
    Li, Borui
    Wan, Jiawei
    Yang, Guang
    Yan, Yanfa
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (21) : 6730 - 6733
  • [8] Solution-Processed SnO2 Quantum Dots for the Electron Transport Layer of Flexible and Printed Perovskite Solar Cells
    Kiani, Muhammad Salman
    Sadirkhanov, Zhandos T.
    Kakimov, Alibek G.
    Parkhomenko, Hryhorii P.
    Ng, Annie
    Jumabekov, Askhat N.
    NANOMATERIALS, 2022, 12 (15)
  • [9] Low Temperature Processed SnO2 Electron Transporting Layer from Tin Oxalate for Perovskite Solar Cells
    Cheng, Nian
    Yu, Zhen
    Li, Weiwei
    Lei, Bao
    Zi, Wei
    Xiao, Zhenyu
    Zhao, Zhiqiang
    Zong, Peng-An
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (12) : 15385 - 15391
  • [10] Tailoring electrical property of the low-temperature processed SnO2 for high-performance perovskite solar cells
    Liu, Jing
    Li, Nan
    Dong, Qingshun
    Li, Jiangwei
    Qin, Chao
    Wang, Liduo
    SCIENCE CHINA-MATERIALS, 2019, 62 (02) : 173 - 180