Engineering conduction and valence band states in site-controlled pyramidal quantum dots

被引:7
|
作者
Mohan, A. [1 ]
Gallo, P. [1 ]
Felici, M. [1 ]
Dwir, B. [1 ]
Rudra, A. [1 ]
Faist, J. [2 ]
Kapon, E. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland
[2] ETH, Inst Quantum Elect, CH-8093 Zurich, Switzerland
关键词
FINE-STRUCTURE; CONFINEMENT; ABSORPTION; EMISSION; WIRES;
D O I
10.1063/1.3601916
中图分类号
O59 [应用物理学];
学科分类号
摘要
of site-controlled InGaAs/GaAs quantum dots (QDs) grown into pyramidal recesses, by controlling their shape, size, and composition. QDs with CB level separation ranging from similar to 15 to 70 meV are obtained, useful in applications based on intraband transitions, e. g., QD photodetectors and QD cascade lasers. Moreover, by varying the aspect ratio and composition of the QDs we are able to switch the polarization of the dominant interband transition, a feature of interest for producing single photon emitters and QD amplifiers with prescribed polarization states (c) 2011 American Institute of Physics. [doi:10.1063/1.3601916]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Photocurrent spectroscopy of site-controlled pyramidal quantum dots
    Mohan, A.
    Nevou, L.
    Gallo, P.
    Dwir, B.
    Rudra, A.
    Kapon, E.
    Faist, J.
    APPLIED PHYSICS LETTERS, 2012, 101 (03)
  • [2] Dilute-nitride GaInAsN/GaAs site-controlled pyramidal quantum dots
    Carron, R.
    Gallo, P.
    Dwir, B.
    Rudra, A.
    Kapon, E.
    APPLIED PHYSICS LETTERS, 2011, 99 (18)
  • [3] Bound and anti-bound biexciton in site-controlled pyramidal GaInAs/GaAs quantum dots
    Jarlov, C.
    Gallo, P.
    Calic, M.
    Dwir, B.
    Rudra, A.
    Kapon, E.
    APPLIED PHYSICS LETTERS, 2012, 101 (19)
  • [4] Site-controlled InGaAs/GaAs pyramidal quantum dots grown by MOVPE on patterned substrates using triethylgallium
    Rigal, B.
    Jarlov, C.
    Rudra, A.
    Gallo, P.
    Lyasota, A.
    Dwir, B.
    Kapon, E.
    JOURNAL OF CRYSTAL GROWTH, 2015, 414 : 187 - 191
  • [5] Magneto-photoluminescence of heavy- and light-hole excitons in site-controlled pyramidal quantum dots
    Byszewski, M.
    Chalupar, B.
    Karlsson, K. F.
    Pelucchi, E.
    Oberli, D.
    Rudra, A.
    Kapon, E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (06): : 1873 - 1875
  • [6] Optical spectroscopy of site-controlled quantum dots in a Schottky diode
    Yang, Lily
    Carter, Samuel G.
    Bracker, Allan S.
    Yakes, Michael K.
    Kim, Mijin
    Kim, Chul Soo
    Vora, Patrick M.
    Gammon, Daniel
    APPLIED PHYSICS LETTERS, 2016, 108 (23)
  • [7] Single electron transport through site-controlled InAs quantum dots
    Cha, K. M.
    Shibata, K.
    Hirakawa, K.
    APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [8] Ultrafast coherent manipulation of trions in site-controlled nanowire quantum dots
    Lagoudakis, K. G.
    McMahon, P. L.
    Dory, C.
    Fischer, K. A.
    Mueller, K.
    Borish, V.
    Dalacu, D.
    Poole, P. J.
    Reimer, M. E.
    Zwiller, V.
    Yamamoto, Y.
    Vuckovic, J.
    OPTICA, 2016, 3 (12): : 1430 - 1435
  • [9] Engineering site-controlled quantum dot structures for optical quantum information processing
    Varo, S.
    Juska, G.
    Ranjbar, L.
    Moroni, S. T.
    Gocalinska, A.
    Pelucchi, E.
    LOW-DIMENSIONAL MATERIALS AND DEVICES 2019, 2019, 11085
  • [10] Exciton and multiexciton optical properties of single InAs/GaAs site-controlled quantum dots
    Canet-Ferrer, J.
    Munoz-Matutano, G.
    Herranz, J.
    Rivas, D.
    Alen, B.
    Gonzalez, Y.
    Fuster, D.
    Gonzalez, L.
    Martinez-Pastor, J.
    APPLIED PHYSICS LETTERS, 2013, 103 (18)