Multidimensional solitons and vortices in nonlocal nonlinear optical media

被引:0
作者
Mihalache, D. [1 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn JFIN HH, Magurele 077125, Romania
关键词
spatiotemporal optical solitons; vortex solitons; nonlocal optical media;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a brief overview of recent results in the area of two- and three-dimensional solitons and vortices in nonlocal nonlinear optical media.
引用
收藏
页码:515 / 522
页数:8
相关论文
共 42 条
  • [1] GENERATION OF A TRAIN OF 3-DIMENSIONAL OPTICAL SOLITONS IN A SELF-FOCUSING MEDIUM
    AKHMEDIEV, N
    SOTOCRESPO, JM
    [J]. PHYSICAL REVIEW A, 1993, 47 (02): : 1358 - 1364
  • [2] Akhmediev N., 1997, Solitons-Nonlinear Pulses and Beams
  • [3] Wave collapse in physics: principles and applications to light and plasma waves
    Berge, L
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6): : 259 - 370
  • [4] Spatiotemporally localized multidimensional solitons in self-induced transparency media
    Blaauboer, M
    Malomed, BA
    Kurizki, G
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (09) : 1906 - 1909
  • [5] Ring vortex solitons in nonlocal nonlinear media
    Briedis, D
    Petersen, DE
    Edmundson, D
    Krolikowski, W
    Bang, O
    [J]. OPTICS EXPRESS, 2005, 13 (02): : 435 - 443
  • [6] Observation of optical spatial solitons in a highly nonlocal medium
    Conti, C
    Peccianti, M
    Assanto, G
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (11) : 113902 - 1
  • [7] Optical spatial solitons in soft matter
    Conti, C
    Ruocco, G
    Trillo, S
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (18)
  • [8] Stable vortex solitons in the two-dimensional Ginzburg-Landau equation
    Crasovan, LC
    Malomed, BA
    Mihalache, D
    [J]. PHYSICAL REVIEW E, 2001, 63 (01):
  • [9] Erupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg-Landau equation
    Crasovan, LC
    Malomed, BA
    Mihalache, D
    [J]. PHYSICS LETTERS A, 2001, 289 (1-2) : 59 - 65
  • [10] Desyatnikov AS, 2005, OPT LETT, V30, P869, DOI 10.1364/OL.30.8.000869