Positivity of temperature for some non-isothermal fluid models

被引:5
作者
Lai, Ning-An [1 ]
Liu, Chun [2 ]
Tarfulea, Andrei [3 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Peoples R China
[2] IIT, Dept Appl Math, Chicago, IL 60616 USA
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
关键词
DIMENSIONAL FULL MODEL; GLOBAL EXISTENCE; PHASE; SYSTEM;
D O I
10.1016/j.jde.2022.08.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish three partial differential equation models describing the thermodynamic behavior of a fluid by combining the energetic variational approach, appropriate constitutive relations, and classical thermodynamic laws. By using an explicit algebraic approach, we show a maximum/minimum principle for some auxiliary variables involving the absolute temperature theta and density rho under some special conditions, which then yields the positivity of the temperature. This important fact implies the thermodynamic consistency for our models. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:555 / 578
页数:24
相关论文
共 34 条
[1]  
[Anonymous], 2002, Asymptotic Modelling of Fluid Flow Phenomena
[2]  
[Anonymous], 2002, Foundations of Fluid Dynamics
[3]  
[Anonymous], 2002, Non-Smooth Thermomechanics
[4]   Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application [J].
Boettcher, N. ;
Singh, A. -K. ;
Kolditz, O. ;
Liedl, R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) :4933-4943
[5]   Stationary solutions of the Navier-Stokes-Fourier system in planar domains with impermeable boundary [J].
Ciuperca, Ionel Sorin ;
Feireisl, Eduard ;
Jai, Mohammed ;
Petrov, Adrien .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 140 :110-138
[6]   POSITIVITY OF TEMPERATURE IN THE GENERAL FREMOND MODEL FOR SHAPE-MEMORY ALLOYS [J].
COLLI, P ;
SPREKELS, J .
CONTINUUM MECHANICS AND THERMODYNAMICS, 1993, 5 (04) :255-264
[7]  
Dafermos CM., 2016, Hyperbolic Conservation Laws in Continuum Physics, V4, DOI DOI 10.1007/978-3-662-49451-6
[8]  
De Anna F., ARXIV
[9]   Non-isothermal General Ericksen-Leslie System: Derivation, Analysis and Thermodynamic Consistency [J].
De Anna, Francesco ;
Liu, Chun .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (02) :637-717
[10]  
Dunkel J, 2014, NAT PHYS, V10, P67, DOI [10.1038/nphys2815, 10.1038/NPHYS2815]