A new method for feature subset selection for handling classification problems

被引:0
作者
Chen, SM [1 ]
Shie, JD [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
来源
FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new method for dealing with feature subset selection for handling classification problems. We discriminate numeric features to construct the membership function of each fuzzy subset of each feature. Then, we select the feature subset based on the proposed fuzzy entropy measure with boundary samples. The proposed feature subset selection method can select relevant features from sample data to get higher average classification accuracy rates than the ones selected by the existing methods.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 20 条
  • [1] [Anonymous], 1972, INFORM CONTROL
  • [2] A METHOD FOR ATTRIBUTE SELECTION IN INDUCTIVE LEARNING-SYSTEMS
    BAIM, PW
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (06) : 888 - 896
  • [3] USING MUTUAL INFORMATION FOR SELECTING FEATURES IN SUPERVISED NEURAL-NET LEARNING
    BATTITI, R
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (04): : 537 - 550
  • [4] Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
  • [5] Caruana R., 1994, MACH LEARN P 1994, P28, DOI 10.1016/B978-1-55860-335-6.50012-X
  • [6] CHAIKLA N, 1999, P 1999 IEEE INT C SY, V5, P538
  • [7] Data visualization: Parallel coordinates and dimension reduction
    Chen, JX
    Wang, SB
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2001, 3 (05) : 110 - 113
  • [8] Feature analysis: Neural network and fuzzy set theoretic approaches
    De, RK
    Pal, NR
    Pal, SK
    [J]. PATTERN RECOGNITION, 1997, 30 (10) : 1579 - 1590
  • [9] Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771
  • [10] John G.H., 1995, Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, DOI [10.1109/TGRS.2004.834800, DOI 10.1109/TGRS.2004.834800, 10.5555/2074158.2074196, DOI 10.5555/2074158.2074196]