InP Lateral Overgrowth Technology for Silicon Photonics

被引:0
作者
Wang, Zhechao [1 ]
Junesand, Carl [1 ]
Metaferia, Wondwosen [1 ]
Hu, Chen [1 ]
Lourdudoss, Sebastian [1 ]
Wosinski, Lech [1 ]
机构
[1] Royal Inst Technol Sweden, Sch ICT, S-16440 Kista, Sweden
来源
OPTOELECTRONIC MATERIALS AND DEVICES V | 2011年 / 7987卷
关键词
epitaxial lateral overgrowth; silicon photonics; integrated optics materials; semiconducting III-V materials; hydride vapour phase epitaxy; ULTRA-SMALL; LASER; GAIN; SI; GE;
D O I
10.1117/12.887973
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Epitaxial Lateral Overgrowth has been proposed as a key technology of a novel hybrid integration platform for active silicon photonic components. By fabricating silicon oxide mask on top of a thin InP seed layer, we can use the so called defect necking effect to filter out the threading dislocations propagating from the seed layer. By optimizing the process, thin dislocation free InP layers have been successfully obtained on top of silicon wafer. The obtained characterization results show that the grown InP layer has very high quality, which can be used as the base for further process of active photonic components on top of silicon. (C) 2010 Optical Society of America [OCIS codes: 130.3130, 130.5990]
引用
收藏
页数:6
相关论文
共 50 条
[41]   HETEROGENEOUS INTEGRATION OF INDIUM PHOSPHIDE ON SILICON BY NANO-EPITAXIAL LATERAL OVERGROWTH [J].
Junesand, Carl ;
Olsson, Fredrik ;
Xiang, Yu ;
Gau, Ming-Horng ;
Lourdudoss, Sebastian .
2009 IEEE 21ST INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE & RELATED MATERIALS (IPRM), 2009, :59-62
[42]   The epitaxial lateral overgrowth of silicon by two-step liquid phase epitaxy [J].
Jozwik, Iwona ;
Olchowik, Jan Marian .
JOURNAL OF CRYSTAL GROWTH, 2006, 294 (02) :367-372
[43]   Silicon Photonics: Optical modulators [J].
Reed, G. T. ;
Gardes, F. Y. ;
Hu, Youfang ;
Thomson, D. ;
Lever, L. ;
Kelsall, R. ;
Ikonic, Z. .
QUANTUM SENSING AND NANOPHOTONIC DEVICES VII, 2010, 7608
[44]   High-performance silicon photonics technology for telecommunications applications [J].
Yamada, Koji ;
Tsuchizawa, Tai ;
Nishi, Hidetaka ;
Kou, Rai ;
Hiraki, Tatsurou ;
Takeda, Kotaro ;
Fukuda, Hiroshi ;
Ishikawa, Yasuhiko ;
Wada, Kazumi ;
Yamamoto, Tsuyoshi .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2014, 15 (02)
[45]   Avalanche photodiodes on silicon photonics [J].
Yuan, Yuan ;
Tossoun, Bassem ;
Huang, Zhihong ;
Zeng, Xiaoge ;
Kurczveil, Geza ;
Fiorentino, Marco ;
Liang, Di ;
Beausoleil, Raymond G. .
JOURNAL OF SEMICONDUCTORS, 2022, 43 (02)
[46]   Ge/SiGe for silicon photonics [J].
Ishikawa, Yasuhiko .
NEXT-GENERATION OPTICAL NETWORKS FOR DATA CENTERS AND SHORT-REACH LINKS IV, 2017, 10131
[47]   Rubber stamp for silicon photonics [J].
Kelsall, Robert W. .
NATURE PHOTONICS, 2012, 6 (09) :577-579
[48]   Integrated Silicon Photonics: Visualisation of Patent Datasets for Mapping Technology [J].
Sandal, Nidhi ;
Kumar, Avinash .
DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY, 2015, 35 (02) :132-137
[49]   Scaling computation with silicon photonics [J].
Kimerling, Lionel C. ;
Kwong, Dim-Lee ;
Wada, Kazumi .
MRS BULLETIN, 2014, 39 (08) :687-695
[50]   300-mm Monolithic Silicon Photonics Foundry Technology [J].
Giewont, Ken ;
Nummy, Karen ;
Anderson, Frederick A. ;
Ayala, Javier ;
Barwicz, Tycoon ;
Bian, Yusheng ;
Dezfulian, Kevin K. ;
Gill, Douglas M. ;
Houghton, Thomas ;
Hu, Shuren ;
Peng, Bo ;
Rakowski, Michal ;
Rauch, Stewart, III ;
Rosenberg, Jessie C. ;
Sahin, Ash ;
Stobert, Ian ;
Stricker, Andy .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2019, 25 (05)