On Uncertainty and Robustness in Large-Scale Intelligent Data Fusion Systems

被引:4
作者
Marlin, Benjamin M. [1 ]
Abdelzaher, Tarek [2 ]
Ciocarlie, Gabriela [3 ]
Cobb, Adam D. [4 ]
Dennison, Mark [4 ]
Jalaian, Brian [4 ]
Kaplan, Lance [4 ]
Raber, Tiffany [4 ]
Raglin, Adrienne [4 ]
Sharma, Piyush K. [4 ]
Srivastava, Mani [5 ]
Trout, Theron [6 ]
Vadera, Meet P. [1 ]
Wigness, Maggie [4 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
[2] Univ Illinois, Champaign, IL USA
[3] SRI Int, Menlo Pk, CA USA
[4] US Army Res Lab, Adelphi, MD USA
[5] Univ Calif Los Angeles, Los Angeles, CA USA
[6] Stormfish Sci Corp, Silver Spring, MD USA
来源
2020 IEEE SECOND INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2020) | 2020年
关键词
Uncertainty Analysis; Cyber-physical Systems; Machine Intelligence; PROBABILITY;
D O I
10.1109/CogMI50398.2020.00020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The resurgence of AI in the recent decade dramatically changes the design of modern sensor data fusion systems, leading to new challenges, opportunities, and research directions. One of these challenges is the management of uncertainty. This paper develops a framework to reason about sources of uncertainty, develops representations of uncertainty, and investigates uncertainty mitigation strategies in modern intelligent data processing systems. Insights are developed into workflow composition that maximizes efficacy at accomplishing mission goals despite the sources of uncertainty, while leveraging a collaboration of humans, algorithms, and machine learning components.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 73 条
[1]   Will Distributed Computing Revolutionize Peace? The Emergence of Battlefield IoT [J].
Abdelzaher, Tarek ;
Ayania, Nora ;
Basar, Tamer ;
Diggavi, Suhas ;
Diesner, Jana ;
Ganesan, Deepak ;
Govindan, Ramesh ;
Jha, Susmit ;
Lepoint, Tancrede ;
Marlin, Ben ;
Nahrstedt, Klara ;
Nicol, David ;
Rajkumar, Raj ;
Russell, Stephen ;
Seshia, Sanjit ;
Sha, Fei ;
Shenoy, Prashant ;
Srivastava, Mani ;
Sukhatme, Gaurav ;
Swami, Ananthram ;
Tabuada, Paulo ;
Tabuada, Paulo ;
Towsley, Don ;
Vaidya, Nitin ;
Veeravalli, Venu .
2018 IEEE 38TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2018, :1129-1138
[2]   Feedback performance control in software services - Using a control-theoretic approach to achieve quality of service guarantees [J].
Abdelzaher, TF ;
Stankovic, JA ;
Lu, CY ;
Zhang, RH ;
Lu, Y .
IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (03) :74-90
[3]  
[Anonymous], 2017, Handbook of multisensor data fusion: theory and practice
[4]  
[Anonymous], 2006, Probabilistic Networks and Expert Systems: Exact Computational Methods for Bayesian Networks
[5]  
[Anonymous], 1950, Foundations of the Theory of Probability
[6]  
[Anonymous], 1976, A Mathematical Theory of Evidence, DOI 10.1515/9780691214696
[7]  
[Anonymous], 2006, ADV APPL DSMT INFORM
[8]  
[Anonymous], 2009, Probabilistic Graphical Models: Principles and Techniques
[9]  
[Anonymous], 2015, Social Sensing: Building Reliable Systems on Unreliable Data
[10]  
[Anonymous], 2003, Probability Theory